ERK1/2 achieves sustained activation by stimulating MAPK phosphatase-1 degradation via the ubiquitin-proteasome pathway

被引:108
作者
Lin, YW [1 ]
Chuang, SM [1 ]
Yang, JL [1 ]
机构
[1] Natl Tsing Hua Univ, Mol Carcinogenesis Lab, Inst Biotechnol, Dept Life Sci, Hsinchu 300, Taiwan
关键词
D O I
10.1074/jbc.M301854200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Sustained extracellular signal-regulated kinase 1/2 (ERK1/2) activation does not always correlate with its upstream Ras-Raf-mitogen-activated protein kinase kinase 1/2 ( MKK1/ 2) signal cascade in cancer cells, and the mechanism remains elusive. Here we report a novel mechanism by which sustained ERK1/2 activation is established. We demonstrate that Pb(II), a carcinogenic metal, persistently induces ERK1/2 activity in CL3 human lung cancer cells and that Ras-Raf-MKK1/2 signaling cannot fully account for such activation. It is intriguing that Pb( II) treatment reduces mitogen-activated protein kinase phosphatase 1 (MKP-1) protein levels in time- and dose-dependent manners, which correlates with sustained ERK1/2 activation, and that Pb( II) also induces mRNA and de novo protein synthesis of MKP-1. In Pb( II)-treated cells, MKP-1 is polyubiquitinated, and proteasome inhibitors markedly alleviate the ubiquitination and degradation of MKP-1. Inhibiting the Pb( II)-induced ERK1/2 activation by PD98059 greatly suppresses MKP-1 ubiquitination and degradation. It is remarkable that constitutive activation of MKK1/ 2 triggers endogenous MKP-1 ubiquitination and degradation in various mammalian cell lines. Furthermore, expression of functional MKP-1 decreases ERK1/2 activation and the c-Fos protein level and enhances cytotoxicity under Pb( II) exposure. Taken together, these results demonstrate that activated ERK1/2 can trigger MKP-1 degradation via the ubiquitin-proteasome pathway, thus facilitating long-term activation of ERK1/2 against cytotoxicity.
引用
收藏
页码:21534 / 21541
页数:8
相关论文
共 50 条
[1]  
ALESSI DR, 1993, ONCOGENE, V8, P2015
[2]   Constitutive ERK1/2 activation in esophagogastric rib bone marrow micrometastatic cells is MEK-independent [J].
Barry, OP ;
Mullan, B ;
Sheehan, D ;
Kazanietz, MG ;
Shanahan, F ;
Collins, JK ;
O'Sullivan, GC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (18) :15537-15546
[3]   Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases [J].
Bennett, AM ;
Tonks, NK .
SCIENCE, 1997, 278 (5341) :1288-1291
[4]   The dual specificity mitogen-activated protein kinase phosphatase-1 and -2 are induced by the p42/p44(MAPK) cascade [J].
Brondello, JM ;
Brunet, A ;
Pouyssegur, J ;
McKenzie, FR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (02) :1368-1376
[5]   Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation [J].
Brondello, JM ;
Pouysségur, J ;
McKenzie, FR .
SCIENCE, 1999, 286 (5449) :2514-2517
[6]   Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase [J].
Camps, M ;
Nichols, A ;
Gillieron, C ;
Antonsson, B ;
Muda, M ;
Chabert, C ;
Boschert, U ;
Arkinstall, S .
SCIENCE, 1998, 280 (5367) :1262-1265
[7]   Mammalian MAP kinase signalling cascades [J].
Chang, LF ;
Karin, M .
NATURE, 2001, 410 (6824) :37-40
[8]   Discordance between the binding affinity of mitogen-activated protein kinase subfamily members for MAP kinase phosphatase-2 and their ability to activate the phosphatase catalytically [J].
Chen, PL ;
Hutter, D ;
Yang, XL ;
Gorospe, M ;
Davis, RJ ;
Liu, YS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (31) :29440-29449
[9]   Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium [J].
Chuang, SM ;
Wang, IC ;
Yang, JL .
CARCINOGENESIS, 2000, 21 (07) :1423-1432
[10]   Docking sites on substrate proteins direct extracellular signal-regulated kinase to phosphorylate specific residues [J].
Fantz, DA ;
Jacobs, D ;
Glossip, D ;
Kornfeld, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (29) :27256-27265