Bohr radius for the punctured disk

被引:15
作者
Abu Muhanna, Yusuf [1 ]
Ali, Rosihan M. [2 ]
Ng, Zhen Chuan [2 ]
机构
[1] Amer Univ Sharjah, Dept Math, Box 26666, Sharjah, U Arab Emirates
[2] Univ Sains Malaysia, Sch Math Sci, Usm 11800, Penang, Malaysia
关键词
Bohr phenomenon; Bohr radius; Bohr theorem; punctured disk; majorant function; POWER-SERIES THEOREM; BANACH-SPACE; INEQUALITY; VARIABLES; BASES;
D O I
10.1002/mana.201600125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the Bohr phenomenon for the class of analytic functions from the unit disk into the punctured unit disk. The Bohr radius is shown to be 1/3.
引用
收藏
页码:2434 / 2443
页数:10
相关论文
共 28 条
[1]   Bohr radius for subordinating families of analytic functions and bounded harmonic mappings [J].
Abu Muhanna, Y. ;
Ali, Rosihan M. ;
Ng, Zhen Chuan ;
Hasni, Siti Farah M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 420 (01) :124-136
[2]   Bohr's phenomenon for analytic functions into the exterior of a compact convex body [J].
Abu Muhanna, Y. ;
Ali, Rosihan M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) :512-517
[3]  
Abu-Muhanna Y, 2010, COMPLEX VAR ELLIPTIC, V55, P1
[4]  
Aizenberg L, 2005, OPER THEOR, V158, P87
[5]   Multidimensional analogues of Bohr's theorem on power series [J].
Aizenberg, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (04) :1147-1155
[6]   Generalization of a theorem of Bohr for bases in spaces of holomorphic functions of several complex variables [J].
Aizenberg, L ;
Aytuna, A ;
Djakov, P .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 258 (02) :429-447
[7]   Generalization of results about the Bohr radius for power series [J].
Aizenberg, Lev .
STUDIA MATHEMATICA, 2007, 180 (02) :161-168
[8]   The Bohr radius for starlike logharmonic mappings [J].
Ali, Rosihan M. ;
Abdulhadi, Zayid ;
Ng, Zhen Chuan .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (01) :1-14
[9]   Bohr property of bases in the space of entire functions and its generalizations [J].
Aytuna, Aydin ;
Djakov, Plamen .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 :411-420
[10]   The Bohr radius of the n-dimensional polydisk is equivalent to √(log n)/n [J].
Bayart, Frederic ;
Pellegrino, Daniel ;
Seoane-Sepulveda, Juan B. .
ADVANCES IN MATHEMATICS, 2014, 264 :726-746