The Time-Domain Lippmann-Schwinger Equation and Convolution Quadrature

被引:6
|
作者
Lechleiter, Armin [1 ]
Monk, Peter [2 ]
机构
[1] Univ Bremen, Ctr Ind Math, D-28359 Bremen, Germany
[2] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
关键词
convolution quadrature; Lippman-Schwinger; time domain; BOUNDARY INTEGRAL-EQUATIONS; NUMERICAL-SOLUTION; WAVE-EQUATION; DISCRETIZATION; SCATTERING; MULTISTEP;
D O I
10.1002/num.21921
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider time-domain acoustic scattering from a penetrable medium with a variable sound speed. This problem can be reduced to solve a time-domain volume Lippmann-Schwinger integral equation. Using convolution quadrature in time and trigonometric collocation in space, we can compute an approximate solution. We prove that the time-domain Lippmann-Schwinger equation has a unique solution and prove conditional convergence and error estimates for the fully discrete solution for globally smooth sound speeds. Preliminary numerical results show that the method behaves well even for discontinuous sound speeds. (c) 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 517-540, 2015
引用
收藏
页码:517 / 540
页数:24
相关论文
共 50 条