Mei conserved quantities for systems with unilateral non-Chetaev nonholonomic constraints in the event space

被引:9
作者
Jia Li-Qun [1 ]
Luo Shao-Kai
Zhang Yao-Yu
机构
[1] Jiangnan Univ, Sch Sci, Wuxi 214122, Peoples R China
[2] Zhejiang Sci Tech Univ, Inst Math Mech & Math Phys, Hangzhou 310018, Peoples R China
[3] Pingdingshan Univ, Elect & Informat Engn Coll, Pingdingshan 467002, Peoples R China
关键词
event space; unilateral constraint; nonholonomic system; Mei conserved quantity;
D O I
10.7498/aps.56.6188
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Mei symmetry and Mei conserved quantity for a system with unilateral non-Chetaev nonholonomic constraints in the event space are studied. The differential equations of motion of the system are established. The definition and the criteria of Mei symmetry, weakly Mei symmetry, strongly Mei symmetry for the system are given in this paper. The existence condition and the expression of Mei conserved quantity are deduced directly from Mei symmetry. An example is given to illustrate the application of the results.
引用
收藏
页码:6188 / 6193
页数:6
相关论文
共 24 条
  • [1] Chen XW, 2003, CHINESE PHYS, V12, P936, DOI 10.1088/1009-1963/12/9/302
  • [2] Fang JH, 2006, CHINESE PHYS, V15, P2792, DOI 10.1088/1009-1963/15/12/005
  • [3] Momentum-dependent symmetries and non-Noether conserved quantities for nonholonomic nonconservative Hamilton canonical systems
    Department of Physics, Zhejiang Sci-Tech University, Hangzhou 310018, China
    不详
    不详
    不详
    [J]. Chin. Phys., 2006, 1 (8-12): : 8 - 12
  • [4] Mei symmetries of a type of dynamical equations
    Ge Wei-Kuan
    [J]. ACTA PHYSICA SINICA, 2007, 56 (01) : 1 - 4
  • [5] Gu SL, 2004, CHINESE PHYS, V13, P979
  • [6] Hojman conserved quantities for systems with non-Chetaev nonholonomic constraints in the event space
    Jia Li-Qun
    Zhang Yao-Yu
    Zheng Shi-Wang
    [J]. ACTA PHYSICA SINICA, 2007, 56 (02) : 649 - 654
  • [7] Mei symmetry of generalized Hamilton systems with additional terms
    Jia Li-Qun
    Zheng Shi-Wang
    [J]. ACTA PHYSICA SINICA, 2006, 55 (08) : 3829 - 3832
  • [8] Li YC, 2001, CHINESE PHYS, V10, P376, DOI 10.1088/1009-1963/10/5/302
  • [9] Luo SK, 2005, CHINESE PHYS, V14, P656, DOI 10.1088/1009-1963/14/4/003
  • [10] A set of Lie symmetrical non-Noether conserved quantity for the relativistic Hamiltonian systems
    Luo, SK
    Jia, LQ
    Cai, JL
    [J]. CHINESE PHYSICS, 2003, 12 (08): : 841 - 845