Realizing Superior Cycle Stability of a Ni-Rich Layered LiNi0.83Co0.12Mn0.05O2 Cathode with a B2O3 Surface Modification

被引:39
作者
Li, Qiang [1 ,2 ,3 ]
Zhuang, Weidong [1 ,2 ,3 ]
Li, Zhao [1 ,2 ,3 ]
Wu, Shuaijin [1 ,2 ]
Li, Ning [1 ,2 ]
Gao, Min [1 ,2 ]
Li, Wenjin [1 ,2 ,3 ]
Wang, Jiantao [1 ,2 ,3 ]
Lu, Shigang [1 ,2 ,3 ]
机构
[1] GRINM Grp Co, Ltd, Natl Power Battery Innovat Ctr, Beijing, Beijing, Peoples R China
[2] China Automot Battery Res Inst Co, Ltd, Beijing, Beijing, Peoples R China
[3] Gen Res Inst Nonferrous Metals, Beijing, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Ni-rich cathode; surface modification; B2O3 coating layer; B3+-doped surface; cycle stability; LITHIUM-ION BATTERIES; ELECTROCHEMICAL PERFORMANCE; OXIDE; LI; SUBSTITUTION; TRANSITION; CAPABILITY;
D O I
10.1002/celc.201901991
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Ni-rich cathode is considered a promising cathode for its high specific capacity. However, a sharp capacity attenuation induced by interface problems limits the application of the cathode material. Herein, we propose a practical surface modification strategy by introducing diboron trioxide (B2O3) to the surface of LiNi0.83Co0.12Mn0.05O2 (NCM) cathode materials. B2O3-modified NCM shows superior cyclic stability with a capacity retention of 87.7 % at 1 C after 200 cycles in comparison to 69.4 % for a bare NCM. On the basis of material and electrochemical characterizations, we conclude that the superior cycle stability of B2O3-modified NCM material benefits from the formation of B2O3 coating and B3+ doping on the surface. The B2O3 coating layer that is confirmed by scanning and transmission electron microscopy can suppress surface side reactions and reduce the content of Li2CO3 on the surface. The B3+-doping surface is verified by X-ray diffraction and X-ray photoelectron spectroscopy and triggers a reduction of a small amount of Ni3+ to Ni2+. Furthermore, the combination of surface B2O3 coating and B3+ doping inhibits the irreversible phase transitions and extension of microcracks in the NCM material. The above surface modification strategy provides a direction for the acquisition of long-life cathode materials.
引用
收藏
页码:998 / 1006
页数:9
相关论文
共 48 条
  • [1] Electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material modified by coating with Al2O3 nanoparticles
    Araki, Kazuhiro
    Taguchi, Noboru
    Sakaebe, Hikari
    Tatsumi, Kuniaki
    Ogumi, Zempachi
    [J]. JOURNAL OF POWER SOURCES, 2014, 269 : 236 - 243
  • [2] Surface Modification of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Tungsten Oxide Coating for Improved Electrochemical Performance in Lithium-Ion Batteries
    Becker, Dina
    Boerner, Markus
    Noelle, Roman
    Diehl, Marcel
    Klein, Sven
    Rodehorst, Uta
    Schmuch, Richard
    Winter, Martin
    Placke, Tobias
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (20) : 18404 - 18414
  • [3] The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material
    Chen, Tao
    Li, Xiang
    Wang, Hao
    Yan, Xinxiu
    Wang, Lei
    Deng, Bangwei
    Ge, Wujie
    Qu, Meizhen
    [J]. JOURNAL OF POWER SOURCES, 2018, 374 : 1 - 11
  • [4] MnPO4-Coated Li(Ni0.4Co0.2Mn0.4)O2 for Lithium(-Ion) Batteries with Outstanding Cycling Stability and Enhanced Lithiation Kinetics
    Chen, Zhen
    Kim, Guk-Tae
    Bresser, Dominic
    Diemant, Thomas
    Asenbauer, Jakob
    Jeong, Sangsik
    Copley, Mark
    Behm, Rolf Juergen
    Lin, Jianyi
    Shen, Zexiang
    Passerini, Stefano
    [J]. ADVANCED ENERGY MATERIALS, 2018, 8 (27)
  • [5] Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2
    Cho, Dae-Hyun
    Jo, Chang-Heum
    Cho, Woosuk
    Kim, Young-Jun
    Yashiro, Hitoshi
    Sun, Yang-Kook
    Myung, Seung-Taek
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (06) : A920 - A926
  • [6] The Role of Zr Doping in Stabilizing Li[Ni0.6Co0.2Mn0.2]O2 as a Cathode Material for Lithium-Ion Batteries
    Choi, Jonghyun
    Lee, Seung-Yong
    Yoon, Sangmoon
    Kim, Kyeong-Ho
    Kim, Miyoung
    Hong, Seong-Hyeon
    [J]. CHEMSUSCHEM, 2019, 12 (11) : 2439 - 2446
  • [7] Nano Li4Ti5O12-LiMn2O4 batteries with high power capability and improved cycle-life
    Du Pasquier, Aurelien
    Huang, C. C.
    Spitler, Timothy
    [J]. JOURNAL OF POWER SOURCES, 2009, 186 (02) : 508 - 514
  • [8] Challenges in the development of advanced Li-ion batteries: a review
    Etacheri, Vinodkumar
    Marom, Rotem
    Elazari, Ran
    Salitra, Gregory
    Aurbach, Doron
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) : 3243 - 3262
  • [9] Improvement of Cycleability and Rate-Capability of LiNi0.5Co0.2Mn0.3O2 Cathode Materials Coated with Lithium Boron Oxide by an Antisolvent Precipitation Method
    Hashigami, Satoshi
    Yoshimi, Kei
    Kato, Yukihiro
    Yoshida, Hiroyuki
    Inagaki, Toru
    Haruta, Masakazu
    Hashinokuchi, Michihiro
    Doi, Takayuki
    Inaba, Minoru
    [J]. CHEMISTRYSELECT, 2019, 4 (29): : 8676 - 8681
  • [10] Origin of Carbon Dioxide Evolved during Cycling of Nickel-Rich Layered NCM Cathodes
    Hatsukade, Toru
    Schiele, Alexander
    Hartmann, Pascal
    Brezesinski, Torsten
    Janek, Juergen
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (45) : 38892 - 38899