A family of C0 finite elements for Kirchhoff plates I:: Error analysis

被引:33
作者
Da Veiga, L. Beirao
Niiranen, J.
Stenberg, R.
机构
[1] Univ Milan, Dipartmento Matemat F Enriques, I-20133 Milan, Italy
[2] Helsinki Univ Technol, Inst Math, Helsinki 02015, Finland
关键词
finite elements; Kirchhoff plate model; free boundary; a priori error analysis; a posteriori error analysis;
D O I
10.1137/06067554X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new finite element formulation for the Kirchhoff plate model is presented. The method is a displacement formulation with the deflection and the rotation vector as unknowns, and it is based on ideas stemming from a stabilized method for the Reissner-Mindlin model [R. Stenberg, in Asymptotic Methods for Elastic Structures, P. Ciarlet, L. Trabucho, and J. M. Viano, eds., de Gruyter, Berlin, 1995] and a method to treat a free boundary [P. Destuynder and T. Nevers, RAIRO Model. Math. Anal. Numer., 22 (1988), pp. 217-242]. Optimal a priori and a posteriori error estimates are derived.
引用
收藏
页码:2047 / 2071
页数:25
相关论文
共 14 条
[11]   BOUNDARY SUBSPACES FOR THE FINITE-ELEMENT METHOD WITH LAGRANGE MULTIPLIERS [J].
PITKARANTA, J .
NUMERISCHE MATHEMATIK, 1979, 33 (03) :273-289
[12]   Design principles and error analysis for reduced-shear plate-bending finite elements [J].
Pitkaranta, J ;
Suri, M .
NUMERISCHE MATHEMATIK, 1996, 75 (02) :223-266
[13]  
STENBERG R, 1995, ASYMPTOTIC METHODS E, P209
[14]  
VERFURTH R, 1984, RAIRO-ANAL NUMER-NUM, V18, P175