Bearing Fault Diagnosis Using Piecewise Aggregate Approximation and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise

被引:22
|
作者
Hu, Lei [1 ,2 ]
Wang, Ligui [1 ]
Chen, Yanlu [1 ]
Hu, Niaoqing [3 ]
Jiang, Yu [3 ]
机构
[1] Hunan Univ Technol, Coll Railway Transportat, Zhuzhou 412007, Peoples R China
[2] Hunan Univ Sci & Technol, Hunan Prov Key Lab Hlth Maintenance Mech Equipmen, Xiangtan 411201, Peoples R China
[3] Natl Univ Def Technol, Lab Sci & Technol Integrated Logist Support, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
rolling bearings; fault diagnosis; piecewise aggregate approximation; CEEMDAN; AMPLITUDE IMPACT TRANSIENTS; DEMODULATION; BAND;
D O I
10.3390/s22176599
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) effectively separates the fault vibration signals of rolling bearings and improves the diagnosis of rolling bearing faults. However, CEEMDAN has high memory requirements and low computational efficiency. In each iteration of CEEMDAN, fault vibration signals are added with noises, both the vibration signals added with noises and the added noises are decomposed with classical empirical mode decomposition (EMD). This paper proposes a rolling bearing fault diagnosis method that combines piecewise aggregate approximation (PAA) with CEEMDAN. PAA enables CEEMDAN to decompose long signals and to achieve enhanced diagnosis. In particular, the method first yields the vibration envelope using bandpass filtering and demodulation, then compresses the envelope using PAA, and finally decomposes the compressed signal with CEEMDAN. Test data verification results show that the proposed method is more effective and more efficient than CEEMDAN.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Noise Eliminated Ensemble Empirical Mode Decomposition for Bearing Fault Diagnosis
    Atik Faysal
    Wai Keng Ngui
    M. H. Lim
    Journal of Vibration Engineering & Technologies, 2021, 9 : 2229 - 2245
  • [2] Noise Eliminated Ensemble Empirical Mode Decomposition for Bearing Fault Diagnosis
    Faysal, Atik
    Ngui, Wai Keng
    Lim, M. H.
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2021, 9 (08) : 2229 - 2245
  • [3] Bearing fault feature extraction method based on complete ensemble empirical mode decomposition with adaptive noise
    Xiao, Maohua
    Zhang, Cunyi
    Wen, Kai
    Xiong, Longfei
    Geng, Guosheng
    Wu, Dan
    JOURNAL OF VIBROENGINEERING, 2018, 20 (07) : 2622 - 2631
  • [4] A COMPLETE ENSEMBLE EMPIRICAL MODE DECOMPOSITION WITH ADAPTIVE NOISE
    Torres, Maria E.
    Colominas, Marcelo A.
    Schlotthauer, Gaston
    Flandrin, Patrick
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 4144 - 4147
  • [5] Rolling bearing fault diagnosis based on improved complete ensemble empirical mode of decomposition with adaptive noise combined with minimum entropy deconvolution
    Rabah, Abdelkader
    Abdelhafid, Kaddour
    JOURNAL OF VIBROENGINEERING, 2018, 20 (01) : 240 - 257
  • [6] Rolling Bearing Fault Diagnosis Based on Improved Complete Ensemble Empirical Mode Decomposition
    Attoui, Issam
    Fergani, Nadir
    Oudjani, Brahim
    Deliou, Adel
    2016 4TH INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING & INFORMATION TECHNOLOGY (CEIT), 2016,
  • [7] Fault Diagnosis of Rolling Bearing Based on an Improved Denoising Technique Using Complete Ensemble Empirical Mode Decomposition and Adaptive Thresholding Method
    Sahu, Prashant Kumar
    Rai, Rajiv Nandan
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2023, 11 (02) : 513 - 535
  • [8] Fault Diagnosis of Rolling Bearing Based on an Improved Denoising Technique Using Complete Ensemble Empirical Mode Decomposition and Adaptive Thresholding Method
    Prashant Kumar Sahu
    Rajiv Nandan Rai
    Journal of Vibration Engineering & Technologies, 2023, 11 : 513 - 535
  • [9] An improved complementary ensemble empirical mode decomposition with adaptive noise and its application to rolling element bearing fault diagnosis
    Cheng, Yao
    Wang, Zhiwei
    Chen, Bingyan
    Zhang, Weihua
    Huang, Guanhua
    ISA TRANSACTIONS, 2019, 91 (218-234) : 218 - 234
  • [10] Decomposition of machining error for surfaces using complete ensemble empirical mode decomposition with adaptive noise
    Chen, Yueping
    Xu, Jiahe
    Tang, Qingchun
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2021, 34 (10) : 1049 - 1066