Linear output regulation with dynamic optimization for uncertain linear over-actuated systems

被引:14
作者
Cocetti, Matteo [1 ,3 ]
Serrani, Andrea [2 ]
Zaccarian, Luca [1 ,3 ]
机构
[1] Univ Trento, Dept Ind Engn, Via Sommar 9, I-38123 Trento, IT, Italy
[2] Ohio State Univ, Dept Elect & Comp Engn, 2015 Neil Ave, Columbus, OH 43210 USA
[3] Univ Toulouse, CNRS, LAAS, F-31077 Toulouse, FR, France
关键词
Linear output regulation; Dynamic input allocation; Optimization; Uncertain systems; ALLOCATION;
D O I
10.1016/j.automatica.2018.08.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the linear output regulation problem for uncertain over-actuated plants. The general form of input redundancy considered in this work implies the existence of multiple control inputs and state trajectories compatible with a prescribed reference for the output. On-line selection, according to certain performance criteria, of the most suitable of these inputs-state trajectories leads to a linear output regulation problem with dynamic redundancy allocation. We present a solution that augments the well known internal model control scheme with two additional dynamical systems. The first one, named annihilator, parametrizes the inputs and the corresponding state trajectories that are invisible from the output. The second one, named redundancy allocator, dynamically selects the best solution according to a predefined performance criterion. We derive explicit solutions for the performance criterion equal to relaxed 1, 2, and infinity- norms of the plant input. This set-up is a particular case of the dynamic redundancy allocation problem named dynamic input allocation. The proposed solutions can be implemented in an error feedback form and are especially suitable for optimizing sparsity, power and amplitude of the control input. Finally, structural stability, robustness and existence of a unique steady-state are proven. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:214 / 225
页数:12
相关论文
共 23 条
[1]  
[Anonymous], 2014, Matrix analysis
[2]  
Bais AZ, 2015, IEEE INT C INT ROBOT, P2380, DOI 10.1109/IROS.2015.7353699
[3]   Evaluation of optimization methods for control allocation [J].
Bodson, M .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2002, 25 (04) :703-711
[4]  
Boyd L., 2004, CONVEX OPTIMIZATION
[5]  
Brentari M, 2016, P AMER CONTR CONF, P7414, DOI 10.1109/ACC.2016.7526843
[6]  
Cocetti M, 2016, P AMER CONTR CONF, P2906, DOI 10.1109/ACC.2016.7525360
[7]   Torque Setpoint Tracking for Parallel Hybrid Electric Vehicles Using Dynamic Input Allocation [J].
Cordiner, Stefano ;
Galeani, Sergio ;
Mecocci, Francesco ;
Mulone, Vincenzo ;
Zaccarian, Luca .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2014, 22 (05) :2007-2015
[8]  
Cristofaro A, 2014, IEEE DECIS CONTR P, P4246, DOI 10.1109/CDC.2014.7040051
[9]   Shape Control with the eXtreme Shape Controller During Plasma Current Ramp-Up and Ramp-Down at the JET Tokamak [J].
De Tommasi, G. ;
Ambrosino, G. ;
Ariola, M. ;
Calabro, G. ;
Galeani, S. ;
Maviglia, F. ;
Pironti, A. ;
Rimini, F. G. ;
Sips, A. C. C. ;
Varano, G. ;
Vitelli, R. ;
Zaccarian, L. .
JOURNAL OF FUSION ENERGY, 2014, 33 (02) :149-157
[10]   Nonlinear dynamic allocator for optimal input/output performance trade-off: Application to the JET tokamak shape controller [J].
De Tommasi, Gianmaria ;
Galeani, Sergio ;
Pironti, Alfredo ;
Varano, Gianluca ;
Zaccarian, Luca .
AUTOMATICA, 2011, 47 (05) :981-987