SPARSE ESTIMATION OF GENERALIZED LINEAR MODELS (GLM) VIA APPROXIMATED INFORMATION CRITERIA

被引:9
|
作者
Su, Xiaogang [1 ]
Fan, Juanjuan [2 ]
Levine, Richard A. [2 ]
Nunn, Martha E. [3 ]
Tsai, Chih-Ling [4 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[3] Creighton Univ, Dept Periodontol, Omaha, NE 68178 USA
[4] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
BIC; generalized linear models; post-selection inference; regularization; sparse estimation; variable selection; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; REGRESSION;
D O I
10.5705/ss.202016.0353
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a sparse estimation method, termed MIC (Minimum approximated Information Criterion), for generalized linear models (GLM) in fixed dimensions. What is essentially involved in MIC is the approximation of the l(0)- by a continuous unit dent function. A reparameterization step is devised to enforce sparsity in parameter estimates while maintaining the smoothness of the objective function. MIC yields superior performance in sparse estimation by optimizing the approximated information criterion without reducing the search space and is computationally advantageous since no selection of tuning parameters is required. Moreover, the reparameterization tactic leads to valid significance testing results free of post-selection inference. We explore the asymptotic properties of MIC, and illustrate its usage with simulated experiments and empirical examples.
引用
收藏
页码:1561 / 1581
页数:21
相关论文
共 50 条
  • [41] On assessing goodness of fit of generalized linear models to sparse data
    Farrington, CP
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1996, 58 (02): : 349 - 360
  • [42] dglars: An R Package to Estimate Sparse Generalized Linear Models
    Augugliaro, Luigi
    Mineo, Angelo M.
    Wit, Ernst C.
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 59 (08): : 1 - 40
  • [43] Integrative factor-adjusted sparse generalized linear models
    Xu, Fuzhi
    Ma, Shuangge
    Zhang, Qingzhao
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2025, 95 (04) : 764 - 780
  • [44] Sparse Bayesian Regression for Grouped Variables in Generalized Linear Models
    Raman, Sudhir
    Roth, Volker
    PATTERN RECOGNITION, PROCEEDINGS, 2009, 5748 : 242 - 251
  • [45] Estimation of generalized linear latent variable models via fully exponential Laplace approximation
    Bianconcini, Silvia
    Cagnone, Silvia
    JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 112 : 183 - 193
  • [46] Consistent Estimation of Generalized Linear Models with High Dimensional Predictors via Stepwise Regression
    Pijyan, Alex
    Zheng, Qi
    Hong, Hyokyoung G.
    Li, Yi
    ENTROPY, 2020, 22 (09)
  • [47] Variable Selection With Prior Information for Generalized Linear Models via the Prior LASSO Method
    Jiang, Yuan
    He, Yunxiao
    Zhang, Heping
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (513) : 355 - 376
  • [48] Optimal Model Averaging Estimation for Generalized Linear Models and Generalized Linear Mixed-Effects Models
    Zhang, Xinyu
    Yu, Dalei
    Zou, Guohua
    Liang, Hua
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2016, 111 (516) : 1775 - 1790
  • [49] Detecting Significant Differences Between Information Retrieval Systems via Generalized Linear Models
    Faggioli, Guglielmo
    Ferro, Nicola
    Fuhr, Norbert
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 446 - 456
  • [50] Designs for generalized linear models with random block effects via information matrix approximations
    Waite, T. W.
    Woods, D. C.
    BIOMETRIKA, 2015, 102 (03) : 677 - 693