SPARSE ESTIMATION OF GENERALIZED LINEAR MODELS (GLM) VIA APPROXIMATED INFORMATION CRITERIA

被引:9
作者
Su, Xiaogang [1 ]
Fan, Juanjuan [2 ]
Levine, Richard A. [2 ]
Nunn, Martha E. [3 ]
Tsai, Chih-Ling [4 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[3] Creighton Univ, Dept Periodontol, Omaha, NE 68178 USA
[4] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
BIC; generalized linear models; post-selection inference; regularization; sparse estimation; variable selection; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; REGRESSION;
D O I
10.5705/ss.202016.0353
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a sparse estimation method, termed MIC (Minimum approximated Information Criterion), for generalized linear models (GLM) in fixed dimensions. What is essentially involved in MIC is the approximation of the l(0)- by a continuous unit dent function. A reparameterization step is devised to enforce sparsity in parameter estimates while maintaining the smoothness of the objective function. MIC yields superior performance in sparse estimation by optimizing the approximated information criterion without reducing the search space and is computationally advantageous since no selection of tuning parameters is required. Moreover, the reparameterization tactic leads to valid significance testing results free of post-selection inference. We explore the asymptotic properties of MIC, and illustrate its usage with simulated experiments and empirical examples.
引用
收藏
页码:1561 / 1581
页数:21
相关论文
共 50 条
  • [31] A diagnostic of influential cases based on the information complexity criteria in generalized linear mixed models
    Shang, Junfeng
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (13) : 3751 - 3760
  • [32] Differential geometric least angle regression: a differential geometric approach to sparse generalized linear models
    Augugliaro, Luigi
    Mineo, Angelo M.
    Wit, Ernst C.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2013, 75 (03) : 471 - 498
  • [33] Fast Sparse Classification for Generalized Linear and Additive Models
    Liu, Jiachang
    Zhong, Chudi
    Seltzer, Margo
    Rudin, Cynthia
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151
  • [34] Improving heritability estimation by a variable selection approach in sparse high dimensional linear mixed models
    Bonnet, Anna
    Levy-Leduc, Celine
    Gassiat, Elisabeth
    Toro, Roberto
    Bourgeron, Thomas
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2018, 67 (04) : 813 - 839
  • [35] Estimation in Rotationally Invariant Generalized Linear Models via Approximate Message Passing
    Venkataramanan, Ramji
    Koegler, Kevin
    Mondelli, Marco
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [36] Robust Information Criterion for Model Selection in Sparse High-Dimensional Linear Regression Models
    Gohain, Prakash Borpatra
    Jansson, Magnus
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 2251 - 2266
  • [37] Identification and estimation for generalized varying coefficient partially linear models
    Wang, Mingqiu
    Wang, Xiuli
    Amin, Muhammad
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2018, 47 (04): : 1041 - 1060
  • [38] Variable selection and estimation in generalized linear models with the seamless L0 penalty
    Li, Zilin
    Wang, Sijian
    Lin, Xihong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2012, 40 (04): : 745 - 769
  • [39] ESTIMATION AND VARIABLE SELECTION FOR GENERALIZED ADDITIVE PARTIAL LINEAR MODELS
    Wang, Li
    Liu, Xiang
    Liang, Hua
    Carroll, Raymond J.
    ANNALS OF STATISTICS, 2011, 39 (04) : 1827 - 1851
  • [40] Model averaging estimation of generalized linear models with imputed covariates
    Dardanoni, Valentino
    De Luca, Giuseppe
    Modica, Salvatore
    Peracchi, Franco
    JOURNAL OF ECONOMETRICS, 2015, 184 (02) : 452 - 463