SPARSE ESTIMATION OF GENERALIZED LINEAR MODELS (GLM) VIA APPROXIMATED INFORMATION CRITERIA

被引:9
|
作者
Su, Xiaogang [1 ]
Fan, Juanjuan [2 ]
Levine, Richard A. [2 ]
Nunn, Martha E. [3 ]
Tsai, Chih-Ling [4 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[3] Creighton Univ, Dept Periodontol, Omaha, NE 68178 USA
[4] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
BIC; generalized linear models; post-selection inference; regularization; sparse estimation; variable selection; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; REGRESSION;
D O I
10.5705/ss.202016.0353
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a sparse estimation method, termed MIC (Minimum approximated Information Criterion), for generalized linear models (GLM) in fixed dimensions. What is essentially involved in MIC is the approximation of the l(0)- by a continuous unit dent function. A reparameterization step is devised to enforce sparsity in parameter estimates while maintaining the smoothness of the objective function. MIC yields superior performance in sparse estimation by optimizing the approximated information criterion without reducing the search space and is computationally advantageous since no selection of tuning parameters is required. Moreover, the reparameterization tactic leads to valid significance testing results free of post-selection inference. We explore the asymptotic properties of MIC, and illustrate its usage with simulated experiments and empirical examples.
引用
收藏
页码:1561 / 1581
页数:21
相关论文
共 50 条
  • [31] Doubly robust estimation in generalized linear models
    Orsini, Nicola
    Bellocco, Rino
    Sjolander, Arvid
    STATA JOURNAL, 2013, 13 (01): : 185 - 205
  • [33] Iterative rank estimation for generalized linear models
    Miakonkana, Guy-vanie M.
    Abebe, Asheber
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2014, 151 : 60 - 72
  • [34] Robust estimation in generalized linear mixed models
    Yau, KKW
    Kuk, AYC
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2002, 64 : 101 - 117
  • [35] Estimation of Claim Frequency by Generalized Linear Models
    Spackova, Adela
    FINANCIAL MANAGEMENT OF FIRMS AND FINANCIAL INSTITUTIONS: 11TH INTERNATIONAL SCIENTIFIC CONFERENCE, PTS I-III, 2017, : 821 - 830
  • [36] Estimation of generalized linear latent variable models
    Huber, P
    Ronchetti, E
    Victoria-Feser, MP
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 893 - 908
  • [37] Initial robust estimation in generalized linear models
    Agostinelli, Claudio
    Valdora, Marina
    Yohai, Victor J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 134 : 144 - 156
  • [38] Generalized maximum entropy estimation of linear models
    Corral, Paul
    Kuehn, Daniel
    Jabir, Ermengarde
    STATA JOURNAL, 2017, 17 (01): : 240 - 249
  • [39] Sparse estimation of linear model via Bayesian method
    Yang, Yang
    Yang, Yanjiao
    Wang, Lichun
    COMPUTATIONAL STATISTICS, 2024, 39 (04) : 2011 - 2038
  • [40] Multiple Change-Points Estimation in Linear Regression Models via Sparse Group Lasso
    Zhang, Bingwen
    Geng, Jun
    Lai, Lifeng
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (09) : 2209 - 2224