SPARSE ESTIMATION OF GENERALIZED LINEAR MODELS (GLM) VIA APPROXIMATED INFORMATION CRITERIA

被引:9
|
作者
Su, Xiaogang [1 ]
Fan, Juanjuan [2 ]
Levine, Richard A. [2 ]
Nunn, Martha E. [3 ]
Tsai, Chih-Ling [4 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[3] Creighton Univ, Dept Periodontol, Omaha, NE 68178 USA
[4] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
BIC; generalized linear models; post-selection inference; regularization; sparse estimation; variable selection; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; REGRESSION;
D O I
10.5705/ss.202016.0353
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a sparse estimation method, termed MIC (Minimum approximated Information Criterion), for generalized linear models (GLM) in fixed dimensions. What is essentially involved in MIC is the approximation of the l(0)- by a continuous unit dent function. A reparameterization step is devised to enforce sparsity in parameter estimates while maintaining the smoothness of the objective function. MIC yields superior performance in sparse estimation by optimizing the approximated information criterion without reducing the search space and is computationally advantageous since no selection of tuning parameters is required. Moreover, the reparameterization tactic leads to valid significance testing results free of post-selection inference. We explore the asymptotic properties of MIC, and illustrate its usage with simulated experiments and empirical examples.
引用
收藏
页码:1561 / 1581
页数:21
相关论文
共 50 条
  • [21] Goodness of fit of generalized linear models to sparse data
    Paul, SR
    Deng, DL
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2000, 62 : 323 - 333
  • [22] Sparse principal component regression for generalized linear models
    Kawano, Shuichi
    Fujisawa, Hironori
    Takada, Toyoyuki
    Shiroishi, Toshihiko
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 124 : 180 - 196
  • [23] Linear mixed model selection via minimum approximated information criterion
    Atutey, Olivia
    Shang, Junfeng
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (08) : 4046 - 4070
  • [24] Estimation in Rotationally Invariant Generalized Linear Models via Approximate Message Passing
    Venkataramanan, Ramji
    Koegler, Kevin
    Mondelli, Marco
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [25] Bayes-Optimal Estimation in Generalized Linear Models via Spatial Coupling
    Cobo, Pablo Pascual
    Hsieh, Kuan
    Venkataramanan, Ramji
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (11) : 8343 - 8363
  • [26] Comparison of linear predictors obtained by data transformation, generalized linear models (GLM) and response modeling methodology (RMM)
    Shore, Haim
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2008, 24 (04) : 389 - 399
  • [27] Graphical criteria for efficient total effect estimation via adjustment in causal linear models
    Henckel, Leonard
    Perkovic, Emilija
    Maathuis, Marloes H.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2022, 84 (02) : 579 - 599
  • [28] Estimation Rates for Sparse Linear Cyclic Causal Models
    Huetter, Jan-Christian
    Rigollet, Philippe
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI 2020), 2020, 124 : 1169 - 1178
  • [29] Remodeling and Estimation for Sparse Partially Linear Regression Models
    Zeng, Yunhui
    Wang, Xiuli
    Lin, Lu
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [30] Homogeneity Estimation in Multivariate Generalized Linear Models
    Ding, Hao
    Wang, Zhanfeng
    Wu, Yaohua
    Wu, Yuehua
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023,