SPARSE ESTIMATION OF GENERALIZED LINEAR MODELS (GLM) VIA APPROXIMATED INFORMATION CRITERIA

被引:9
|
作者
Su, Xiaogang [1 ]
Fan, Juanjuan [2 ]
Levine, Richard A. [2 ]
Nunn, Martha E. [3 ]
Tsai, Chih-Ling [4 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[3] Creighton Univ, Dept Periodontol, Omaha, NE 68178 USA
[4] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
BIC; generalized linear models; post-selection inference; regularization; sparse estimation; variable selection; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; REGRESSION;
D O I
10.5705/ss.202016.0353
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a sparse estimation method, termed MIC (Minimum approximated Information Criterion), for generalized linear models (GLM) in fixed dimensions. What is essentially involved in MIC is the approximation of the l(0)- by a continuous unit dent function. A reparameterization step is devised to enforce sparsity in parameter estimates while maintaining the smoothness of the objective function. MIC yields superior performance in sparse estimation by optimizing the approximated information criterion without reducing the search space and is computationally advantageous since no selection of tuning parameters is required. Moreover, the reparameterization tactic leads to valid significance testing results free of post-selection inference. We explore the asymptotic properties of MIC, and illustrate its usage with simulated experiments and empirical examples.
引用
收藏
页码:1561 / 1581
页数:21
相关论文
共 50 条
  • [1] Sparse Estimation of Cox Proportional Hazards Models via Approximated Information Criteria
    Su, Xiaogang
    Wijayasinghe, Chalani S.
    Fan, Juanjuan
    Zhang, Ying
    BIOMETRICS, 2016, 72 (03) : 751 - 759
  • [2] coxphMIC: An R Package for Sparse Estimation of Cox Proportional Hazards Models via Approximated Information Criteria
    Nabi, Razieh
    Su, Xiaogang
    R JOURNAL, 2017, 9 (01): : 229 - 238
  • [3] GLM plus : An Efficient System for Generalized Linear Models
    Yu, Lele
    Wang, Lingyu
    Shao, Yingxia
    Guo, Long
    Cui, Bin
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP), 2018, : 293 - 300
  • [4] Development of rental property insurance models with Generalized Linear Models (GLM)
    Sudarwanto, S.
    Ambarwati, L.
    Hadi, I
    4TH ANNUAL APPLIED SCIENCE AND ENGINEERING CONFERENCE, 2019, 2019, 1402
  • [5] Modified versions of the Bayesian Information Criterion for sparse Generalized Linear Models
    Zak-Szatkowska, Malgorzata
    Bogdan, Malgorzata
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (11) : 2908 - 2924
  • [6] Asymptotic properties and information criteria for misspecified generalized linear mixed models
    Yu, Dalei
    Zhang, Xinyu
    Yau, Kelvin K. W.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2018, 80 (04) : 817 - 836
  • [7] glm2: Fitting Generalized Linear Models with Convergence Problems
    Marschner, Ian C.
    R JOURNAL, 2011, 3 (02): : 12 - 15
  • [8] ON VARIATIONAL BAYES ESTIMATION AND VARIATIONAL INFORMATION CRITERIA FOR LINEAR REGRESSION MODELS
    You, Chong
    Ormerod, John T.
    Mueller, Samuel
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2014, 56 (01) : 73 - 87
  • [9] glm-ie: Generalised Linear Models Inference & Estimation Toolbox
    Nickisch, Hannes
    JOURNAL OF MACHINE LEARNING RESEARCH, 2012, 13 : 1699 - 1703
  • [10] Dual extrapolation for sparse generalized linear models
    Massias, Mathurin
    Vaiter, Samuel
    Gramfort, Alexandre
    Salmon, Joseph
    Journal of Machine Learning Research, 2020, 21