SPARSE ESTIMATION OF GENERALIZED LINEAR MODELS (GLM) VIA APPROXIMATED INFORMATION CRITERIA

被引:9
作者
Su, Xiaogang [1 ]
Fan, Juanjuan [2 ]
Levine, Richard A. [2 ]
Nunn, Martha E. [3 ]
Tsai, Chih-Ling [4 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[2] San Diego State Univ, Dept Math & Stat, San Diego, CA 92182 USA
[3] Creighton Univ, Dept Periodontol, Omaha, NE 68178 USA
[4] Univ Calif Davis, Grad Sch Management, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
BIC; generalized linear models; post-selection inference; regularization; sparse estimation; variable selection; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; REGRESSION;
D O I
10.5705/ss.202016.0353
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a sparse estimation method, termed MIC (Minimum approximated Information Criterion), for generalized linear models (GLM) in fixed dimensions. What is essentially involved in MIC is the approximation of the l(0)- by a continuous unit dent function. A reparameterization step is devised to enforce sparsity in parameter estimates while maintaining the smoothness of the objective function. MIC yields superior performance in sparse estimation by optimizing the approximated information criterion without reducing the search space and is computationally advantageous since no selection of tuning parameters is required. Moreover, the reparameterization tactic leads to valid significance testing results free of post-selection inference. We explore the asymptotic properties of MIC, and illustrate its usage with simulated experiments and empirical examples.
引用
收藏
页码:1561 / 1581
页数:21
相关论文
共 50 条
  • [1] Sparse Estimation of Cox Proportional Hazards Models via Approximated Information Criteria
    Su, Xiaogang
    Wijayasinghe, Chalani S.
    Fan, Juanjuan
    Zhang, Ying
    BIOMETRICS, 2016, 72 (03) : 751 - 759
  • [2] coxphMIC: An R Package for Sparse Estimation of Cox Proportional Hazards Models via Approximated Information Criteria
    Nabi, Razieh
    Su, Xiaogang
    R JOURNAL, 2017, 9 (01): : 229 - 238
  • [3] Modified versions of the Bayesian Information Criterion for sparse Generalized Linear Models
    Zak-Szatkowska, Malgorzata
    Bogdan, Malgorzata
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (11) : 2908 - 2924
  • [4] Linear mixed model selection via minimum approximated information criterion
    Atutey, Olivia
    Shang, Junfeng
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (08) : 4046 - 4070
  • [5] Bridge estimation for generalized linear models with a diverging number of parameters
    Wang, Mingqiu
    Song, Lixin
    Wang, Xiaoguang
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (21-22) : 1584 - 1596
  • [6] dglars: An R Package to Estimate Sparse Generalized Linear Models
    Augugliaro, Luigi
    Mineo, Angelo M.
    Wit, Ernst C.
    JOURNAL OF STATISTICAL SOFTWARE, 2014, 59 (08): : 1 - 40
  • [7] Sparse principal component regression for generalized linear models
    Kawano, Shuichi
    Fujisawa, Hironori
    Takada, Toyoyuki
    Shiroishi, Toshihiko
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2018, 124 : 180 - 196
  • [8] Dual Extrapolation for Sparse Generalized Linear Models
    Massias, Mathurin
    Vaiter, Samuel
    Gramfort, Alexandre
    Salmon, Joseph
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21 : 1 - 33
  • [9] Distributed simultaneous inference in generalized linear models via confidence distribution
    Tang, Lu
    Zhou, Ling
    Song, Peter X. -K.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2020, 176
  • [10] Robust and efficient estimation of nonparametric generalized linear models
    Kalogridis, Ioannis
    Claeskens, Gerda
    Van Aelst, Stefan
    TEST, 2023, 32 (03) : 1055 - 1078