Superconducting solenoids for an international muon cooling experiment

被引:6
作者
Green, MA [1 ]
Rey, JM
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
[2] CENS, F-91191 Gif Sur Yvette, France
关键词
muon cooling; superconducting solenoids;
D O I
10.1109/TASC.2003.812676
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The international union ionization cooling experiment MICE will consist of two focusing cooling cells and a pair of uniform field solenoids used for particle identification and emittance measurements. The 2.75-meter long cooling cells have a pair of field flip coils and a coupling coil. The 0.52-meter diameter field flip coils surround an absorber that removes transverse and longitudinal momentum from the unions to be cooled. The beam in the absorber is at a minimum beta point so that scattering of the muons is minimized. The 1.7-meter diameter coupling coils are outside of conventional 201.25 MHz RF cavities that accelerate the unions putting longitudinal momentum into the muons without putting back the transverse momentum into the beam. A third set of flip coils helps the moon beam transition from and to the experimental solenoids. The 0.6-meter diameter experimental solenoids have a uniform field region (good to about I part in 1000) that is 1.3-meters long. The MICE experiment magnets must operate as a single unit so that the field profile will produce the maximum muon cooling.
引用
收藏
页码:1373 / 1376
页数:4
相关论文
共 15 条
  • [1] Superconducting helical solenoids for muon beam cooling
    Kashikhin, Vladimir S.
    Andreev, Nikolai
    Jansson, Andreas
    Johnson, Rolland P.
    Kashikhin, Vadim V.
    Lamm, Michael J.
    Romanov, Gennady
    Yonehara, Katsuya
    Zlobin, Alexander V.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2008, 18 (02) : 252 - 255
  • [2] MICE: The International muon ionization cooling experiment
    Kaplan, Daniel M.
    BEAM COOLING AND RELATED TOPICS, 2006, 821 : 427 - 431
  • [3] The Muon Ionisation Cooling Experiment - MICE
    Apollonio, M.
    ASTROPARTICLE, PARTICLE AND SPACE PHYSICS, DETECTORS AND MEDICAL PHYSICS APPLICATIONS, 2008, 4 : 403 - 412
  • [4] Status of studies for a muon cooling experiment
    Hanke, K
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 503 (1-2) : 390 - 391
  • [5] Superconducting magnet system for muon beam cooling
    Kashikhin, V. S.
    Kashikhin, V. V.
    Yonehara, K.
    Johnson, R. P.
    Andreev, N.
    Novitski, I.
    Zlobin, A. V.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2007, 17 (02) : 1055 - 1058
  • [6] The MANX Muon Cooling Experiment Detection System
    Kahn, S. A.
    Abrams, R. J.
    Ankenbrandt, C.
    Cummings, M. A. C.
    Johnson, R. P.
    Roberts, T. J.
    Yonehara, K.
    NEUTRINO FACTORIES, SUPERBEAMS, AND BETA BEAMS, 2010, 1222 : 463 - +
  • [7] A new muon-pion collection and transport system design using superconducting solenoids based on CSNS
    肖冉
    刘艳芬
    许文贞
    倪晓杰
    潘子文
    叶邦
    Chinese Physics C, 2016, (05) : 101 - 107
  • [8] A new muon-pion collection and transport system design using superconducting solenoids based on CSNS
    Xiao, Ran
    Liu, Yan-Fen
    Xu, Wen-Zhen
    Ni, Xiao-Jie
    Pan, Zi-Wen
    Ye, Bang-Jiao
    CHINESE PHYSICS C, 2016, 40 (05)
  • [9] Challenge of muon cooling rings
    Pastemak, J.
    NEUTRINO FACTORIES, SUPERBEAMS AND BETABEAMS, 2008, 981 : 333 - 335
  • [10] Muon cooling R&D progress in the US
    Li, Derun
    NEUTRINO FACTORIES, SUPERBEAMS AND BETABEAMS, 2008, 981 : 112 - 116