Potential use of microbial engineering in single-cell protein production

被引:19
作者
Balagurunathan, Balaji [1 ]
Ling, Hua [2 ,3 ,4 ,5 ]
Choi, Won Jae [1 ,2 ,3 ,4 ,6 ,7 ]
Chang, Matthew Wook [2 ,3 ,4 ,5 ]
机构
[1] Agcy Sci Technol & Res A STAR 1, Singapore Inst Food & Biotechnol Innovat, 1,Pesek Rd, Singapore 627833, Singapore
[2] Natl Univ Singapore, NUS Synthet Biol Clin & Technol Innovat SynCTI, 28 Med Dr, Singapore 117456, Singapore
[3] Natl Univ Singapore, Yong Loo Lin Sch Med, Synthet Biol Translat Res Programme, 28 Med Dr, Singapore 117456, Singapore
[4] Natl Univ Singapore, Yong Loo Lin Sch Med, Dept Biochem, 8 Med Dr, Singapore 117597, Singapore
[5] Natl Univ Singapore, Wilmar NUS Corp Lab WIL NUS, 14 Med Dr, Singapore 117599, Singapore
[6] Agcy Sci Technol & Res Singapore STAR, Inst Chem & Engn Sci, 1 Pesek Rd, Singapore 627833, Singapore
[7] Singapore Inst Technol, 10 Dover Dr, Singapore 138683, Singapore
基金
新加坡国家研究基金会;
关键词
XYLOSE UTILIZATION; SYNTHETIC BIOLOGY; IMPROVE; PATHWAY;
D O I
10.1016/j.copbio.2022.102740
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Single-cell proteins (SCPs) have been widely used in human food and animal feed applications, still, there are challenges in their production and commercialization. Recently, advances in microbial synthetic biology, genomic engineering, and biofoundry technologies have offered capabilities to effectively and rapidly engineer microorganisms for improving the productivity, nutritional, and functional quality of SCPs. In this review, we discuss various synthetic biology, genomic engineering, and biofoundry tools that can be harnessed for SCP production and genetic modification. We also describe the current and potential applications of genetic modification in producing intermediate feedstocks, as well as biomass-based and multifunctional SCPs. Finally, we discuss the technological and policy-control related challenges encountered when deploying genetic modification in SCP production for animal feed and human food applications.
引用
收藏
页数:7
相关论文
共 63 条
  • [1] Multiplex genome editing of microorganisms using CRISPR-Cas
    Adiego-Perez, Belen
    Randazzo, Paola
    Daran, Jean Marc
    Verwaal, Rene
    Roubos, Johannes. A.
    Daran-Lapujade, Pascale
    van der Oost, John
    [J]. FEMS MICROBIOLOGY LETTERS, 2019, 366 (08)
  • [2] Unlocking the genomic potential of aerobes and phototrophs for the production of nutritious and palatable microbial food without arable land or fossil fuels
    Alloul, Abbas
    Spanoghe, Janne
    Machado, Daniel
    Vlaeminck, Siegfried E.
    [J]. MICROBIAL BIOTECHNOLOGY, 2022, 15 (01): : 6 - 12
  • [3] A High-Efficacy CRISPR Interference System for Gene Function Discovery in Zymomonas mobilis
    Banta, Amy B.
    Enright, Amy L.
    Siletti, Cheta
    Peters, Jason M.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2020, 86 (23) : 1 - 16
  • [4] Expression of a synthetic protein with a high proportion of essential amino acids by Pichia pastoris
    Bartolo-Aguilar, Y.
    Chavez-Cabrera, C.
    Cancino-Diaz, J. C.
    Marsch, R.
    [J]. REVISTA MEXICANA DE INGENIERIA QUIMICA, 2021, 20 (03):
  • [5] Improving the Methanol Tolerance of an Escherichia coli Methylotroph via Adaptive Laboratory Evolution Enhances Synthetic Methanol Utilization
    Bennett, R. Kyle
    Gregory, Gwendolyn J.
    Gonzalez, Jacqueline E.
    Har, Jie Ren Gerald
    Antoniewicz, Maciek R.
    Papoutsakis, Eleftherios T.
    [J]. FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [6] Genetic and metabolic engineering challenges of C1-gas fermenting acetogenic chassis organisms
    Bourgade, Barbara
    Minton, Nigel P.
    Islam, M. Ahsanul
    [J]. FEMS MICROBIOLOGY REVIEWS, 2021, 45 (02)
  • [7] Single Cell Protein: A Potential Substitute in Human and Animal Nutrition
    Bratosin, Bogdan Constantin
    Darjan, Sorina
    Vodnar, Dan Cristian
    [J]. SUSTAINABILITY, 2021, 13 (16)
  • [8] Moulding the mould: understanding and reprogramming filamentous fungal growth and morphogenesis for next generation cell factories
    Cairns, Timothy C.
    Zheng, Xiaomei
    Zheng, Ping
    Sun, Jibin
    Meyer, Vera
    [J]. BIOTECHNOLOGY FOR BIOFUELS, 2019, 12 (1)
  • [9] Engineering biological systems using automated biofoundries
    Chao, Ran
    Mishra, Shekhar
    Si, Tong
    Zhao, Huimin
    [J]. METABOLIC ENGINEERING, 2017, 42 : 98 - 108
  • [10] Mechanism-Driven Metabolic Engineering for Bio-Based Production of FreeR-Lipoic Acid inSaccharomyces cerevisiaeMitochondria
    Chen, Binbin
    Foo, Jee Loon
    Ling, Hua
    Chang, Matthew Wook
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8