Existence and asymptotic behavior of solutions for a class of nonlinear elliptic equations with Neumann condition

被引:30
作者
Marques, I [1 ]
机构
[1] Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil
关键词
Neumann problem; nonconstant solutions; existence; asymptotic behaviour;
D O I
10.1016/j.na.2004.11.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of nonconstant solutions u(epsilon) and their asymptotic behavior (as epsilon -> 0(+)) for the following class of nonlinear elliptic equations in radial form: {-epsilon(2)(r(alpha)vertical bar mu'vertical bar(beta)mu')' = r(gamma) f(u) in (0, R), u' (0) = u' (r) = 0 where alpha, beta, gamma are given real numbers and 0 < R < infinity. We use a version of the Mountain Pass Theorem and the main difficulty is to prove that the solutions so obtained are not constants. For that matter, we have to carryout a careful analysis of the solutions of some Dirichlet problems associated with the Neumann problem. (c) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:21 / 40
页数:20
相关论文
共 9 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations [J].
Azorero, JPG ;
Alonso, IP ;
Manfredi, JJ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (03) :385-404
[3]  
BREZIS H, 1993, CR ACAD SCI I-MATH, V317, P465
[4]   Existence of positive solutions for some problems with nonlinear diffusion [J].
Canada, A ;
Drabek, P ;
Gamez, JL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (10) :4231-4249
[5]   The beginning of the Fucik spectrum for the p-Laplacian [J].
Cuesta, M ;
de Figueiredo, D ;
Gossez, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 159 (01) :212-238
[7]  
HOFER H, 1985, J LOND MATH SOC, V31, P566
[8]   BOUNDARY-REGULARITY FOR SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
LIEBERMAN, GM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (11) :1203-1219
[9]  
Mitidieri, 1996, TOPOL METHOD NONL AN, V7, P133, DOI DOI 10.12775/TMNA.1996.006