共 12 条
RELATIONSHIP BETWEEN QUANTUM AND POISSON STRUCTURES OF ODD DIMENSIONAL EUCLIDEAN SPACES
被引:2
|作者:
Oh, Sei-Qwon
[1
]
Park, Mi-Yeon
[1
]
机构:
[1] Chungnam Natl Univ, Dept Math, Taejon 305764, South Korea
关键词:
Poisson algebra;
Quantized euclidean space;
Topological quotient;
DIXMIER-MOEGLIN EQUIVALENCE;
N-SPACE;
ALGEBRAS;
D O I:
10.1080/00927870903114987
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
It is shown that the prime and primitive spectra of the multiparameter quantized algebra of odd-dimensional euclidean spaces are homeomorphic to the Poisson prime and Poisson primitive spectra of the multiparameter Poisson algebra of odd-dimensional euclidean spaces in the case when the multiplicative subgroup of a base field generated by the parameters is torsion free. As a corollary, it is shown that the prime and primitive spectra of the multiparameter quantized algebra of odd-dimensional euclidean spaces are topological quotients of the prime and maximal spectra of the corresponding commutative polynomial ring.
引用
收藏
页码:3333 / 3346
页数:14
相关论文