On regularity of generalized Hermite interpolation

被引:2
|
作者
Shekhtman, Boris [1 ]
机构
[1] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
关键词
Hermite interpolation; Regularity; Generalized Hermite interpolation; MULTIVARIATE INTERPOLATION; SOLVABILITY;
D O I
10.1016/j.cagd.2015.12.006
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this note we study the regularity of generalized Hermite interpolation and compare it to that of classical Hermite interpolation. While every Hermite interpolation scheme is regular in one variable, the "classical Hermite interpolation schemes" in several variables are regular if and only if they are supported at one point. In this note we exhibit some regular generalized Hermite interpolation schemes supported at two points and study some limitation of existence of such schemes. The existence of such schemes provides a class of counterexamples to a conjecture of Jia and Sharma. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:134 / 139
页数:6
相关论文
共 50 条
  • [21] Hermite Interpolation and Sobolev Orthogonality
    Esther M. García-Caballero
    Teresa E. Pérez
    Miguel A. Piñar
    Acta Applicandae Mathematica, 2000, 61 : 87 - 99
  • [22] Hermite interpolation with symmetric polynomials
    Phung Van Manh
    NUMERICAL ALGORITHMS, 2017, 76 (03) : 709 - 725
  • [23] Trigonometric wavelets for hermite interpolation
    Quak, E
    MATHEMATICS OF COMPUTATION, 1996, 65 (214) : 683 - 722
  • [24] On the singularity of multivariate Hermite interpolation
    Meng, Zhaoliang
    Luo, Zhongxuan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 261 : 85 - 94
  • [25] Hermite and Hermite-Fejér interpolation at Pollaczek zeros
    Mastroianni, Giuseppe
    Notarangelo, Incoronata
    CALCOLO, 2025, 62 (01)
  • [26] Hermite interpolation sequences over fields
    Stacho, L. L.
    Vajda, R.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (01) : 66 - 77
  • [27] UNIQUE SOLVABILITY IN BIVARIATE HERMITE INTERPOLATION
    Marco, Ana
    Martinez, Jose-Javier
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 34 : 20 - 30
  • [28] CONVERGENCE OF LAGRANGE-HERMITE INTERPOLATION
    Bahadur, Swarnima
    Shukla, Manisha
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 255 - 262
  • [29] On Hermite interpolation with B-splines
    Seidel, Hans-Peter
    Computer Aided Geometric Design, 1991, 8 (06) : 439 - 441
  • [30] Geometric Hermite interpolation in Rn by refinements
    Hofit, Ben-Zion Vardi
    Nira, Dyn
    Nir, Sharon
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2023, 49 (03)