Recognizing Berge graphs

被引:175
作者
Chudnovsky, M
Cornuéjols, G
Liu, XM
Seymour, P
Vuskovic, K
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Carnegie Mellon Univ, Tepper Sch Business, Pittsburgh, PA 15213 USA
[3] Fac Sci Luminy, Lab Informat Fondamentale, F-13288 Marseille, France
关键词
D O I
10.1007/s00493-005-0012-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A graph is Berge if no induced subgraph of G is an odd cycle of length at least five or the complement of one. In this paper we give an algorithm to test if a graph G is Berge, with running time O(vertical bar V(G)vertical bar(9)). This is independent of the recent proof of the strong perfect graph conjecture.
引用
收藏
页码:143 / 186
页数:44
相关论文
共 9 条
[1]  
Berge C., 1961, Wissenschaftliche Zeitschrift, P114
[2]  
CHUDNOVSKY M, IN PRESS ANN MATH
[3]   TESTING BALANCEDNESS AND PERFECTION OF LINEAR MATRICES [J].
CONFORTI, M ;
RAO, MR .
MATHEMATICAL PROGRAMMING, 1993, 61 (01) :1-18
[4]   Decomposition of odd-hole-free graphs by double star cutsets and 2-joins [J].
Conforti, M ;
Cornuéjols, G ;
Vuskovic, K .
DISCRETE APPLIED MATHEMATICS, 2004, 141 (1-3) :41-91
[5]   Even-hole-free graphs Part II:: Recognition algorithm [J].
Conforti, M ;
Cornuëjols, G ;
Kapoor, A ;
Vuskovic, K .
JOURNAL OF GRAPH THEORY, 2002, 40 (04) :238-266
[6]   COMPOSITIONS FOR PERFECT GRAPHS [J].
CORNUEJOLS, G ;
CUNNINGHAM, WH .
DISCRETE MATHEMATICS, 1985, 55 (03) :245-254
[7]   OPTIMAL ALGORITHM TO DETECT A LINE GRAPH AND OUTPUT ITS ROOT GRAPH [J].
LEHOT, PGH .
JOURNAL OF THE ACM, 1974, 21 (04) :569-575
[8]   About skew partitions in minimal imperfect graphs [J].
Roussel, F ;
Rubio, P .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 83 (02) :171-190
[9]  
Roussopoulos N. D., 1973, Information Processing Letters, V2, P108, DOI 10.1016/0020-0190(73)90029-X