Modified Prufer and EFGP transforms and the spectral analysis of one-dimensional Schrodinger operators

被引:141
作者
Kiselev, A [1 ]
Last, Y
Simon, B
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
关键词
D O I
10.1007/s002200050346
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using control of the growth of the transfer matrices, we discuss the spectral analysis of continuum and discrete half-line Schrodinger operators with slowly decaying potentials. Among our results we show if V(x) = Sigma(n=1)(infinity)a(n)W(x - x(n)), where W has compact support and x(n)/x(n+1)-->0, then H has purely a.c. (resp. purely s.c.) spectrum on (0, infinity) if Sigma a(n)(2) < infinity (resp. Sigma a(n)(2) = infinity). For lambda n(-1/2)a(n) potentials, where a(n) are independent, identically distributed random variables with E(a(n)) = 0, E(a(n)(2)) = 1, and lambda < 2, we find singular continuous spectrum with explicitly computable fractional Hausdorff dimension.
引用
收藏
页码:1 / 45
页数:45
相关论文
共 37 条
[1]  
[Anonymous], 1979, ERGODIC THEORY DIFFE
[2]  
[Anonymous], 1986, TEORET MAT FIZ
[4]   POSITIVE LYAPUNOV EXPONENTS FOR A CLASS OF DETERMINISTIC POTENTIALS [J].
CHULAEVSKY, V ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (03) :455-466
[5]  
del Rio R, 1994, MATH RES LETT, V1, P437
[6]   OPERATORS WITH SINGULAR CONTINUOUS-SPECTRUM .2. RANK-ONE OPERATORS [J].
DELRIO, R ;
MAKAROV, N ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 165 (01) :59-67
[7]   Operators with singular continuous spectrum .4. Hausdorff dimensions, rank one perturbations, and localization [J].
delRio, R ;
Jitomirskaya, S ;
Last, Y ;
Simon, B .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 69 :153-200
[8]  
DELYON F, 1985, ANN I H POINCARE-PHY, V42, P283
[10]  
EASTHAM MSP, 1982, SCHRODINGER TYPE OPE