Distributions.jl: Definition and Modeling of Probability Distributions in the JuliaStats Ecosystem

被引:28
作者
Besancon, Mathieu [1 ,8 ,9 ,10 ,11 ]
Papamarkou, Theodore [2 ,12 ,13 ]
Anthoff, David [3 ]
Arslan, Alex [4 ]
Byrne, Simon [5 ]
Lin, Dahua [6 ]
Pearson, John [7 ]
机构
[1] Zuse Inst Berlin, Berlin, Germany
[2] Univ Manchester, Dept Math, Manchester, Lancs, England
[3] Univ Calif Berkeley, Energy & Resources Grp, Berkeley, CA 94720 USA
[4] Beacon Biosignals Inc, Boston, MA USA
[5] CALTECH, Pasadena, CA 91125 USA
[6] Chinese Univ Hong Kong, Hong Kong, Peoples R China
[7] Duke Univ, Med Ctr, Dept Biostat & Bioinformat, Durham, NC USA
[8] Polytech Montreal, Dept Appl Math & Ind Engn, Montreal, PQ, Canada
[9] Ecole Cent Lille, Villeneuve Dascq, France
[10] INRIA Lille, INOCS, Villeneuve Dascq, France
[11] CRISTAL, Villeneuve Dascq, France
[12] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[13] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2021年 / 98卷 / 16期
关键词
Julia; distributions; modeling; interface; mixture; KDE; sampling; probabilistic programming; inference;
D O I
10.18637/jss.v098.116
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Random variables and their distributions are a central part in many areas of statistical methods. The Distributions.jl package provides Julia users and developers tools for working with probability distributions, leveraging Julia features for their intuitive and flexible manipulation, while remaining highly efficient through zero-cost abstractions.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 45 条
  • [1] COMPARATIVE-ANALYSIS OF STATISTICAL PATTERN-RECOGNITION METHODS IN HIGH-DIMENSIONAL SETTINGS
    AEBERHARD, S
    COOMANS, D
    DEVEL, O
    [J]. PATTERN RECOGNITION, 1994, 27 (08) : 1065 - 1077
  • [2] COMPUTER-GENERATION OF POISSON DEVIATES FROM MODIFIED NORMAL-DISTRIBUTIONS
    AHRENS, JH
    DIETER, U
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1982, 8 (02): : 163 - 179
  • [3] Aldrich J, 1997, STAT SCI, V12, P162
  • [4] [Anonymous], 2016, ARXIV161009787
  • [5] Bezanson J, 2018, P ACM PROGRAM LANG, V2, DOI 10.1145/3276490
  • [6] Julia: A Fresh Approach to Numerical Computing
    Bezanson, Jeff
    Edelman, Alan
    Karpinski, Stefan
    Shah, Viral B.
    [J]. SIAM REVIEW, 2017, 59 (01) : 65 - 98
  • [7] Bingham E, 2019, J MACH LEARN RES, V20
  • [8] Boost Developers, 2018, BOOST C LIB
  • [9] Stan: A Probabilistic Programming Language
    Carpenter, Bob
    Gelman, Andrew
    Hoffman, Matthew D.
    Lee, Daniel
    Goodrich, Ben
    Betancourt, Michael
    Brubaker, Marcus A.
    Guo, Jiqiang
    Li, Peter
    Riddell, Allen
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01): : 1 - 29
  • [10] Devroye L., 1986, Non-Uniform Random Variate Generation