Hybrid organic-inorganic membranes

被引:57
|
作者
Cornelius, C [1 ]
Hibshman, C [1 ]
Marand, E [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
hybrid materials; sol-gel; polyimide-silica; gas permeation; membranes;
D O I
10.1016/S1383-5866(01)00102-2
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The gas separation performance of a series of hybrid polyimide-silica membranes has been compared to Robeson's upper bound for various gas pairs. Exceptional gas separation was achieved primarily with crosslinked polyimides and with hybrid systems subjected to annealing treatments at elevated temperatures. The hybrid materials were prepared by carrying out sol-gel reactions of various alkoxysilanes in the presence of fully imidized polyimides, whose chain ends and backbone have been functionalized to different degrees with triethoxysilane groups. The alkoxysilanes employed included phenyltrimethoxysilane (PTMOS), methyltrimethoxysilane (MTMOS), tetramethylorthosilicate (TMOS), and tetraethylorthosilicate (TEOS). The presence of additional covalent linkage points along the polyimide backbone served to improve both, gas selectivity and gas permeability, primarily in the case of MTMOS-based hybrid materials. While TEOS and TMOS-based hybrid materials exhibited highly homogenous morphologies, the presence of alkyl groups in the PTMOS and MTMOS-based hybrid systems lead to morphologies of various degrees of phase separation. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:181 / 193
页数:13
相关论文
共 50 条
  • [41] Effect of polyether diamine on gas permeation properties of organic-inorganic hybrid membranes
    Lim, Chunwon
    Hong, Suk-In
    Kim, Hyunjoon
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2007, 43 (01) : 35 - 40
  • [42] Organic-inorganic hybrid titanophosphite proton conductive membranes with graded monomer conversion
    Tokuda, Yomei
    Nishioka, Satoshi
    Ueda, Yoshikatsu
    Koyanaka, Hideki
    Masai, Hirokazu
    Takahashi, Masahide
    Yoko, Toshinobu
    SOLID STATE IONICS, 2012, 206 : 22 - 27
  • [43] ORGANIC-INORGANIC HYBRID MEMBRANES IN SEPARATION PROCESSES: A 10-YEAR REVIEW
    Souza, V. C.
    Quadri, M. G. N.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2013, 30 (04) : 683 - 700
  • [44] Polybenzimidazole/silica nanocomposites: Organic-inorganic hybrid membranes for PEM fuel cell
    Ghosh, Sandip
    Maity, Sudhangshu
    Jana, Tushar
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (38) : 14897 - 14906
  • [45] Organic-inorganic hybrid membranes for removal of benzene from an aqueous solution by pervaporation
    Ohshima, T
    Matsumoto, M
    Miyata, T
    Uragami, T
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2005, 206 (04) : 473 - 483
  • [46] Microwave assisted synthesis of hybrid organic-inorganic membranes for fuel cell applications
    Bauer, F
    Willert-Porada, M
    MICROWAVE AND RADIO FREQUENCY APPLICATIONS, 2003, : 119 - 129
  • [47] Molecular simulation on penetrants diffusion at the interface region of organic-inorganic hybrid membranes
    Pan, Fusheng
    Peng, Fubing
    Lu, Lianyu
    Wang, Jingtao
    Jiang, Zhongyi
    CHEMICAL ENGINEERING SCIENCE, 2008, 63 (04) : 1072 - 1080
  • [48] Class II Hybrid Organic-inorganic Membranes Creating New Versatility in Separations
    Meynen, Vera
    Castricum, Hessel L.
    Buekenhoudt, Anita
    CURRENT ORGANIC CHEMISTRY, 2014, 18 (18) : 2334 - 2350
  • [49] Organic-inorganic hybrid reinforcements for biocomposite
    Han, Seong Ok
    Ahn, Ho Jung
    Kim, Jun Soo
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [50] Hybrid organic-inorganic polariton laser
    Paschos, G. G.
    Somaschi, N.
    Tsintzos, S. I.
    Coles, D.
    Bricks, J. L.
    Hatzopoulos, Z.
    Lidzey, D. G.
    Lagoudakis, P. G.
    Savvidis, P. G.
    SCIENTIFIC REPORTS, 2017, 7