Developing a Prognostic Gene Panel of Epithelial Ovarian Cancer Patients by a Machine Learning Model

被引:18
|
作者
Lu, Tzu-Pin [1 ]
Kuo, Kuan-Ting [2 ]
Chen, Ching-Hsuan [1 ]
Chang, Ming-Cheng [3 ,4 ]
Lin, Hsiu-Ping [3 ]
Hu, Yu-Hao [3 ]
Chiang, Ying-Cheng [3 ,5 ]
Cheng, Wen-Fang [3 ,6 ,7 ]
Chen, Chi-An [3 ]
机构
[1] Natl Taiwan Univ, Inst Epidemiol & Prevent Med, Dept Publ Hlth, Taipei 10055, Taiwan
[2] Natl Taiwan Univ, Coll Med, Dept Pathol, Taipei 10002, Taiwan
[3] Natl Taiwan Univ, Coll Med, Dept Obstet & Gynecol, Taipei 10041, Taiwan
[4] Inst Nucl Energy Res, Atom Energy Council, Execut Yuan, Taoyuan 32546, Taiwan
[5] Natl Taiwan Univ Hosp, Yunlin Branch, Dept Obstet & Gynecol, Touliu 64041, Yunlin, Taiwan
[6] Natl Taiwan Univ, Coll Med, Grad Inst Clin Med, Taipei 10002, Taiwan
[7] Natl Taiwan Univ, Coll Med, Grad Inst Oncol, Taipei 10002, Taiwan
关键词
chemotherapy; microarray; ovarian cancer; predictive model; machine learning; PLATINUM SENSITIVITY; MAINTENANCE THERAPY; BIOMARKERS; BEVACIZUMAB; RESISTANCE;
D O I
10.3390/cancers11020270
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Epithelial ovarian cancer patients usually relapse after primary management. We utilized the support vector machine algorithm to develop a model for the chemo-response using the Cancer Cell Line Encyclopedia (CCLE) and validated the model in The Cancer Genome Atlas (TCGA) and the GSE9891 dataset. Finally, we evaluated the feasibility of the model using ovarian cancer patients from our institute. The 10-gene predictive model demonstrated that the high response group had a longer recurrence-free survival (RFS) (log-rank test, p = 0.015 for TCGA, p = 0.013 for GSE9891 and p = 0.039 for NTUH) and overall survival (OS) (log-rank test, p = 0.002 for TCGA and p = 0.016 for NTUH). In a multivariate Cox hazard regression model, the predictive model (HR: 0.644, 95% CI: 0.436-0.952, p = 0.027) and residual tumor size < 1 cm (HR: 0.312, 95% CI: 0.170-0.573, p < 0.001) were significant factors for recurrence. The predictive model (HR: 0.511, 95% CI: 0.334-0.783, p = 0.002) and residual tumor size < 1 cm (HR: 0.252, 95% CI: 0.128-0.496, p < 0.001) were still significant factors for death. In conclusion, the patients of high response group stratified by the model had good response and favourable prognosis, whereas for the patients of medium to low response groups, introduction of other drugs or clinical trials might be beneficial.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Developing prognostic gene panel of survival time in lung adenocarcinoma patients using machine learning
    Liu, Yidi
    Yang, Mu
    Sun, Weiwei
    Zhang, Mingqiang
    Sun, Jiao
    Wang, Wenjuan
    Tang, Dongqi
    Yuan, Dongfeng
    TRANSLATIONAL CANCER RESEARCH, 2020, 9 (06) : 3860 - +
  • [2] FREQUENCY OF PATHOGENIC MUTATIONS AND PROGNOSTIC IMPACT OF GERMLINE GENE PANEL TESTING IN PATIENTS WITH PRIMARY EPITHELIAL OVARIAN CANCER
    Ataseven, B.
    Harter, P.
    Rhiem, K.
    Heitz, F.
    Schneider, S.
    Bommert, M.
    Traut, A.
    Schmutzler, R. K.
    Du Bois, A.
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2021, 31 : A223 - A224
  • [3] Incidence and prognostic impact of pathogenic germline mutations in gene panel testing of primary advanced epithelial ovarian cancer patients
    Imterat, M.
    du Bois, A.
    Harter, P.
    Rhiem, K.
    Heitz, F.
    Concin, N.
    Traut, A.
    Schmutzler, R.
    Ataseven, B.
    GEBURTSHILFE UND FRAUENHEILKUNDE, 2022, 82 (10) : E97 - E97
  • [4] A prognostic system for epithelial ovarian carcinomas using machine learning
    Grimley, Philip M.
    Liu, Zhenqiu
    Darcy, Kathleen M.
    Hueman, Matthew T.
    Wang, Huan
    Sheng, Li
    Henson, Donald E.
    Chen, Dechang
    ACTA OBSTETRICIA ET GYNECOLOGICA SCANDINAVICA, 2021, 100 (08) : 1511 - 1519
  • [5] Development of machine learning prognostic models for overall survival of epithelial ovarian cancer patients: a SEER-based study
    Fan, Jianing
    Jiang, Yu
    Wang, Xinyan
    Lyv, Juan
    EXPERT REVIEW OF ANTICANCER THERAPY, 2025, 25 (03) : 297 - 306
  • [6] NOVEL CLASSIFICATION OF PATIENTS WITH EPITHELIAL OVARIAN CANCER USING MACHINE LEARNING TECHNOLOGY
    Paik, E. S.
    Park, J. Y.
    Kim, J. H.
    Kim, T. J.
    Choi, C. H.
    Kim, B. G.
    Bae, D. S.
    Seo, S. W.
    Lee, J. W.
    Jeong, S. Y.
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2018, 28 : 718 - 718
  • [7] Immunoscore as prognostic biomarkers in patients with epithelial ovarian cancer
    Lee, Shin-Wha
    Kim, Min-Je
    Kim, Ju-Hyun
    Lee, Young-Jae
    Kim, Yong-Man
    Kim, Yong-Man
    CANCER RESEARCH, 2018, 78 (13)
  • [8] GENE EXPRESSION PROFILE AS A PROGNOSTIC MARKER IN EPITHELIAL OVARIAN CANCER
    Gebbia, F.
    Eusebi, M.
    Tassi, R.
    Gambino, A.
    Odicino, F.
    Sartori, E.
    INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2013, 23 (08)
  • [9] Landscape of Immune Microenvironment in Epithelial Ovarian Cancer and Establishing Risk Model by Machine Learning
    Liu, Shi-yi
    Zhu, Rong-hui
    Wang, Zi-tao
    Tan, Wei
    Zhang, Li
    Wang, Yan-qing
    Dai, Fang-fang
    Yuan, Meng-qin
    Zheng, Ya-jing
    Yang, Dong-yong
    Wang, Fei-yan
    Xian, Shu
    He, Juan
    Zhang, Yu-wei
    Wu, Ma-li
    Deng, Zhi-min
    Hu, Min
    Cheng, Yan-xiang
    Liu, Ye-qiang
    JOURNAL OF ONCOLOGY, 2021, 2021
  • [10] Prediction of survival outcomes in patients with epithelial ovarian cancer using machine learning methods
    Paik, E. Sun
    Lee, Jeong-Won
    Park, Jeong-Yeol
    Kim, Ju-Hyun
    Kim, Mijung
    Kim, Tae-Joong
    Choi, Chet Hun
    Kim, Byoung-Gie
    Bae, Duk-Soo
    Seo, Sung Wook
    JOURNAL OF GYNECOLOGIC ONCOLOGY, 2019, 30 (04)