ANOMALOUS DISSIPATION IN A STOCHASTIC INVISCID DYADIC MODEL

被引:16
作者
Barbato, David [1 ]
Flandoli, Franco [2 ]
Morandin, Francesco [3 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Appl, I-35121 Padua, Italy
[2] Univ Pisa, Dipartimento Matemat Appl, I-56127 Pisa, Italy
[3] Univ Parma, Dipartimento Matemat, I-43124 Parma, Italy
关键词
SPDE; shell models; dyadic model; fluid dynamics; anomalous dissipation; blow-up; Girsanov's transform; multiplicative noise; FINITE-TIME; BLOW-UP; ENERGY; UNIQUENESS;
D O I
10.1214/11-AAP768
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A stochastic version of an inviscid dyadic model of turbulence, with multiplicative noise, is proved to exhibit energy dissipation in spite of the formal energy conservation. As a consequence, global regular solutions cannot exist. After some reductions, the main tool is the escape bahavior at infinity of a certain birth and death process.
引用
收藏
页码:2424 / 2446
页数:23
相关论文
共 50 条
  • [31] Inviscid limits for a stochastically forced shell model of turbulent flow
    Friedlander, Susan
    Glatt-Holtz, Nathan
    Vicol, Vlad
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (03): : 1217 - 1247
  • [32] A short remark on inviscid limit of the stochastic Navier–Stokes equations
    Abhishek Chaudhary
    Guy Vallet
    Zeitschrift für angewandte Mathematik und Physik, 2023, 74
  • [33] LARGE DEVIATIONS FOR STOCHASTIC 3D LERAY-α MODEL WITH FRACTIONAL DISSIPATION
    Li, Shihu
    Liu, Wei
    Xie, Yingchao
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (05) : 2491 - 2510
  • [34] ONSAGER'S CONJECTURE AND ANOMALOUS DISSIPATION ON DOMAINS WITH BOUNDARY
    Drivas, Theodore D.
    Nguyen, Huy Q.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) : 4785 - 4811
  • [35] A short remark on inviscid limit of the stochastic Navier-Stokes equations
    Chaudhary, Abhishek
    Vallet, Guy
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (06):
  • [36] Absence of anomalous dissipation of enstrophy for 3D incompressible Navier-Stokes equations
    Liu, Yang
    Li, Xin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 536 (01)
  • [37] Scaling laws in stochastic system with anomalous diffusion
    Kharchenko, Dmitrii
    FLUCTUATION AND NOISE LETTERS, 2002, 2 (04): : L273 - L278
  • [38] Absence of anomalous dissipation for weak solutions of the Maxwell-Stefan system
    Berselli, Luigi C.
    Georgiadis, Stefanos
    Tzavaras, Athanasios E.
    NONLINEARITY, 2025, 38 (02)
  • [39] Absence of Anomalous Dissipation of Energy in Forced Two Dimensional Fluid Equations
    Peter Constantin
    Andrei Tarfulea
    Vlad Vicol
    Archive for Rational Mechanics and Analysis, 2014, 212 : 875 - 903
  • [40] Generalized Clausius relation and power dissipation in nonequilibrium stochastic systems
    Gaveau, B.
    Moreau, M.
    Schulman, L. S.
    PHYSICAL REVIEW E, 2009, 79 (01):