ANOMALOUS DISSIPATION IN A STOCHASTIC INVISCID DYADIC MODEL

被引:16
作者
Barbato, David [1 ]
Flandoli, Franco [2 ]
Morandin, Francesco [3 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Appl, I-35121 Padua, Italy
[2] Univ Pisa, Dipartimento Matemat Appl, I-56127 Pisa, Italy
[3] Univ Parma, Dipartimento Matemat, I-43124 Parma, Italy
关键词
SPDE; shell models; dyadic model; fluid dynamics; anomalous dissipation; blow-up; Girsanov's transform; multiplicative noise; FINITE-TIME; BLOW-UP; ENERGY; UNIQUENESS;
D O I
10.1214/11-AAP768
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A stochastic version of an inviscid dyadic model of turbulence, with multiplicative noise, is proved to exhibit energy dissipation in spite of the formal energy conservation. As a consequence, global regular solutions cannot exist. After some reductions, the main tool is the escape bahavior at infinity of a certain birth and death process.
引用
收藏
页码:2424 / 2446
页数:23
相关论文
共 27 条
[1]   Quasi-invariance of Brownian measures on the group of circle homeomorphisms and infinite-dimensional Riemannian geometry [J].
Airault, Helene ;
Malliavin, Paul .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 241 (01) :99-142
[2]  
Anderson W., 1991, CONTINUOUS TIME MARK, DOI 10.1007/978-1-4612-3038-0
[3]  
[Anonymous], T SEM PETROVSK
[4]  
[Anonymous], METHODES MATH INFORM
[5]   ENERGY DISSIPATION AND SELF-SIMILAR SOLUTIONS FOR AN UNFORCED INVISCID DYADIC MODEL [J].
Barbato, D. ;
Flandoli, F. ;
Morandin, F. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (04) :1925-1946
[6]   UNIQUENESS FOR A STOCHASTIC INVISCID DYADIC MODEL [J].
Barbato, D. ;
Flandoli, F. ;
Morandin, F. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (07) :2607-2617
[7]   A theorem of uniqueness for an inviscid dyadic model [J].
Barbato, D. ;
Flandoli, Franco ;
Morandin, Francesco .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (9-10) :525-528
[8]   Inviscid dyadic model of turbulence: The fixed point and Onsager's conjecture [J].
Cheskidov, Alexey ;
Friedlander, Susan ;
Pavlovic, Natasa .
JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (06)
[9]   Blow-up in finite time for the dyadic model of the Navier-Stokes equations [J].
Cheskidov, Alexey .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (10) :5101-5120
[10]   AN INVISCID DYADIC MODEL OF TURBULENCE: THE GLOBAL ATTRACTOR [J].
Cheskidov, Alexey ;
Friedlander, Susan ;
Pavlovic, Natasa .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 26 (03) :781-794