UNSUPERVISED CLASSIFIER SELECTION APPROACH FOR HYPERSPECTRAL IMAGE CLASSIFICATION

被引:2
|
作者
Damodaran, Bharath Bhushan [1 ]
Courty, Nicolas [1 ]
Lefevre, Sebastien [1 ]
机构
[1] Univ Bretagne Sud, UMR 6074, IRISA, F-56000 Vannes, France
来源
2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2016年
关键词
Hyperspectral image classification; Multiple classifier system; Classifier selection; Classifier combination; Ensemble learning;
D O I
10.1109/IGARSS.2016.7730332
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Generating accurate and robust classification maps from hyperspectral imagery (HSI) depends on the choice of the classifiers and input data sources. Choosing the appropriate classifier for a problem at hand is a tedious task. Multiple classifier system (MCS) combines the relative merits of various classifiers to generate robust classification maps. However, the presence of inaccurate classifiers may degrade the classification performance of MCS. In this paper, we propose an unsupervised classifier selection strategy to select an appropriate subset of accurate classifiers for the multiple classifier combination from a large pool of classifiers. The experimental results with two HSI show that the proposed classifier selection method overcomes the impact of inaccurate classifiers and significantly increases the classification accuracy.
引用
收藏
页码:5111 / 5114
页数:4
相关论文
共 50 条
  • [41] Unsupervised Iterative CEM-Clustering Based Multiple Gaussian Feature Extraction for Hyperspectral Image Classification
    Xue, Bai
    Zhong, Shengwei
    Shang, Xiaodi
    Hu, Peter F.
    Chang, Chein-, I
    ALGORITHMS, TECHNOLOGIES, AND APPLICATIONS FOR MULTISPECTRAL AND HYPERSPECTRAL IMAGERY XXV, 2019, 10986
  • [42] Microstructure Image Classification: A Classifier Combination Approach Using Fuzzy Integral Measure
    Shib Sankar Sarkar
    Md. Salman Ansari
    Arpan Mahanty
    Kalyani Mali
    Ram Sarkar
    Integrating Materials and Manufacturing Innovation, 2021, 10 : 286 - 298
  • [43] Microstructure Image Classification: A Classifier Combination Approach Using Fuzzy Integral Measure
    Sarkar, Shib Sankar
    Ansari, Md. Salman
    Mahanty, Arpan
    Mali, Kalyani
    Sarkar, Ram
    INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2021, 10 (02) : 286 - 298
  • [44] Improved whale optimization based band selection for hyperspectral remote sensing image classification
    Manoharan, Prabukumar
    Boggavarapu, Phaneendra Kumar L. N.
    INFRARED PHYSICS & TECHNOLOGY, 2021, 119
  • [45] Gabor Cube Selection Based Multitask Joint Sparse Representation for Hyperspectral Image Classification
    Jia, Sen
    Hu, Jie
    Xie, Yao
    Shen, Linlin
    Jia, Xiuping
    Li, Qingquan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (06): : 3174 - 3187
  • [46] Generative Adversarial Networks and Spatial Uncertainty Sample Selection Strategy for Hyperspectral Image Classification
    Yu, Wenyue
    Niu, Sijie
    Gao, Xizhan
    Liu, Kun
    Dong, Jiwen
    FOURTEENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING, ICGIP 2022, 2022, 12705
  • [47] A discriminatory groups-based supervised band selection technique for hyperspectral image classification
    Chaudhri, Shiv Nath
    Roy, Swalpa Kumar
    REMOTE SENSING LETTERS, 2024, 15 (02) : 111 - 120
  • [48] Efficient SpectralFormer for hyperspectral image classification
    Huang, Weiliang
    He, Wenxuan
    Liao, Shuhong
    Xu, Zhen
    Yan, Jingwen
    DIGITAL SIGNAL PROCESSING, 2023, 143
  • [49] Improved algorithm for hyperspectral image classification
    Bouzidi, Sonia
    Ben Braiek, Houssem
    JOURNAL OF ELECTRONIC IMAGING, 2018, 27 (06)
  • [50] SUPERVISED HYPERSPECTRAL IMAGE CLASSIFICATION WITH REJECTION
    Condessa, Filipe
    Bioucas-Dias, Jose
    Kovacevic, Jelena
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2600 - 2603