Moran's I statistic-based nonparametric test with spatio-temporal observations

被引:22
|
作者
Xiong, Y. [1 ]
Bingham, D. [1 ]
Braun, W. J. [2 ]
Hu, X. J. [1 ]
机构
[1] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
[2] Univ British Columbia, Dept Comp Sci Math Phys & Stat, Okanagan, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Heterogeneity; model checking; regression residuals; spatio-temporal correlation; validity of assumption;
D O I
10.1080/10485252.2018.1550197
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Moran's I statistic [Moran, (1950), Notes on Continuous Stochastic Phenomena', Biometrika, 37, 17-23] has been widely used to evaluate spatial autocorrelation. This paper is concerned with Moran's I-induced testing procedure in residual analysis. We begin with exploring the Moran's I statistic in both its original and extended forms analytically and numerically. We demonstrate that the magnitude of the statistic in general depends not only on the underlying correlation but also on certain heterogeneity in the individual observations. One should exercise caution when interpreting the outcome on correlation by the Moran's I-induced procedure. On the other hand, the effect on the Moran's I due to heterogeneity in the observations enables a regression model checking procedure with the residuals. This novel application of Moran's I is justified by simulation and illustrated by an analysis of wildfire records from Alberta, Canada.
引用
收藏
页码:244 / 267
页数:24
相关论文
共 50 条
  • [41] Variable Selection Мethod based on Spatio-temporal Group Lasso and Нierarchical Bayesian Spatio-temporal Мodel
    Wang L.
    Kang Z.
    Journal of Geo-Information Science, 2023, 25 (07) : 1312 - 1324
  • [42] Spatio-temporal variability of upwelling along the southwest coast of India based on satellite observations
    Jayaram, Chiranjivi
    Kumar, P. K. Dinesh
    CONTINENTAL SHELF RESEARCH, 2018, 156 : 33 - 42
  • [43] A Spatio-Temporal Analysis of Mitochondrial DNA Haplogroup I
    Revesz, Peter Z.
    20TH INTERNATIONAL CONFERENCE ON CIRCUITS, SYSTEMS, COMMUNICATIONS AND COMPUTERS (CSCC 2016), 2016, 76
  • [44] Spatio-temporal prediction of atmospheric benzene (Part I)
    Fontes, Tania
    Barros, Nelson
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2012, 184 (02) : 893 - 902
  • [45] Spatio-temporal evolution of the L→I→H transition
    Miki, K.
    Diamond, P. H.
    Guercan, Oe. D.
    Tynan, G. R.
    Estrada, T.
    Schmitz, L.
    Xu, G. S.
    PHYSICS OF PLASMAS, 2012, 19 (09)
  • [46] Spatio-temporal prediction of atmospheric benzene (Part I)
    Tânia Fontes
    Nelson Barros
    Environmental Monitoring and Assessment, 2012, 184 : 893 - 902
  • [47] Progress in mesh based spatio-temporal reconstruction
    Brankov, Jovan G.
    Gonzalo, Ricard Delgado
    Yang, Yongyi
    Jin, Mingwu
    Wernick, Miles N.
    COMPUTATIONAL IMAGING VI, 2008, 6814
  • [48] Motion estimation based on spatio-temporal correlations
    Yoon, HS
    Lee, GS
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS, 2003, : 359 - 362
  • [49] View synthesis based on spatio-temporal continuity
    Yao, Li
    Lu, Qiurui
    Li, Xiaomin
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2019, 2019 (01)
  • [50] SPATIO-TEMPORAL SALIENCY BASED ON RARE MODEL
    Decombas, Marc
    Riche, Nicolas
    Dufaux, Frederic
    Pesquet-Popescu, Beatrice
    Mancas, Matei
    Gosselin, Bernard
    Dutoit, Thierry
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3451 - 3455