Moran's I statistic-based nonparametric test with spatio-temporal observations

被引:22
|
作者
Xiong, Y. [1 ]
Bingham, D. [1 ]
Braun, W. J. [2 ]
Hu, X. J. [1 ]
机构
[1] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
[2] Univ British Columbia, Dept Comp Sci Math Phys & Stat, Okanagan, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Heterogeneity; model checking; regression residuals; spatio-temporal correlation; validity of assumption;
D O I
10.1080/10485252.2018.1550197
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Moran's I statistic [Moran, (1950), Notes on Continuous Stochastic Phenomena', Biometrika, 37, 17-23] has been widely used to evaluate spatial autocorrelation. This paper is concerned with Moran's I-induced testing procedure in residual analysis. We begin with exploring the Moran's I statistic in both its original and extended forms analytically and numerically. We demonstrate that the magnitude of the statistic in general depends not only on the underlying correlation but also on certain heterogeneity in the individual observations. One should exercise caution when interpreting the outcome on correlation by the Moran's I-induced procedure. On the other hand, the effect on the Moran's I due to heterogeneity in the observations enables a regression model checking procedure with the residuals. This novel application of Moran's I is justified by simulation and illustrated by an analysis of wildfire records from Alberta, Canada.
引用
收藏
页码:244 / 267
页数:24
相关论文
共 50 条
  • [31] The nonparametric estimation of long memory spatio-temporal random field models
    Wang LiHong
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (05) : 1115 - 1128
  • [32] Nonparametric Evaluation of Dynamic Disease Risk: A Spatio-Temporal Kernel Approach
    Zhang, Zhijie
    Chen, Dongmei
    Liu, Wenbao
    Racine, Jeffrey S.
    Ong, SengHuat
    Chen, Yue
    Zhao, Genming
    Jiang, Qingwu
    PLOS ONE, 2011, 6 (03):
  • [33] Global spatio-temporal sampling characteristics of Moon-based Earth observations
    Deng, Yu
    Guo, Huadong
    Liu, Guang
    Huang, Jing
    Dong, Runbo
    Wang, Hairong
    Ye, Hanlin
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (20) : 7842 - 7862
  • [34] A Statistic-Based Scan Chain Reordering for Energy-Quality Scalable Scan Test
    Seo, Sungyoul
    Cho, Keewon
    Lee, Young-Woo
    Kang, Sungho
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2018, 8 (03) : 391 - 403
  • [35] A SPECTRAL DOMAIN TEST FOR STATIONARITY OF SPATIO-TEMPORAL DATA
    Bandyopadhyay, Soutir
    Jentsch, Carsten
    Rao, Suhasini Subba
    JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (02) : 326 - 351
  • [36] Nonparametric Mixture of Sparse Regressions on Spatio-Temporal Data - An Application to Climate Prediction
    Liu, Yumin
    Chen, Junxiang
    Ganguly, Auroop
    Dy, Jennifer
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2556 - 2564
  • [37] Nonparametric trend detection in river monitoring network data: a spatio-temporal approach
    Clement, Lieven
    Thas, Olivier
    ENVIRONMETRICS, 2009, 20 (03) : 283 - 297
  • [38] Nonparametric seismic hazard estimation: A spatio-temporal application to the northwest of the Iberian Peninsula
    Francisco-Fernandez, Mario
    Quintela-del-Rio, Alejandro
    TECTONOPHYSICS, 2011, 505 (1-4) : 35 - 43
  • [39] Nonparametric spatio-temporal modeling: Contruction of a geographically and temporally weighted spline regression
    Sifriyani
    Syaripuddin
    Fathurahman, M.
    Sari, Nariza Wanti Wulan
    Fauziyah, Meirinda
    Dani, Andrea Tri Rian
    Jannah, Raudhatul
    Juriani, S. Dwi
    Kusuma, Ratna
    METHODSX, 2025, 14
  • [40] A kernel-enriched order-dependent nonparametric spatio-temporal process
    Das, Moumita
    Bhattacharya, Sourabh
    SPATIAL STATISTICS, 2023, 55