Moran's I statistic-based nonparametric test with spatio-temporal observations

被引:22
|
作者
Xiong, Y. [1 ]
Bingham, D. [1 ]
Braun, W. J. [2 ]
Hu, X. J. [1 ]
机构
[1] Simon Fraser Univ, Dept Stat & Actuarial Sci, Burnaby, BC, Canada
[2] Univ British Columbia, Dept Comp Sci Math Phys & Stat, Okanagan, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Heterogeneity; model checking; regression residuals; spatio-temporal correlation; validity of assumption;
D O I
10.1080/10485252.2018.1550197
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Moran's I statistic [Moran, (1950), Notes on Continuous Stochastic Phenomena', Biometrika, 37, 17-23] has been widely used to evaluate spatial autocorrelation. This paper is concerned with Moran's I-induced testing procedure in residual analysis. We begin with exploring the Moran's I statistic in both its original and extended forms analytically and numerically. We demonstrate that the magnitude of the statistic in general depends not only on the underlying correlation but also on certain heterogeneity in the individual observations. One should exercise caution when interpreting the outcome on correlation by the Moran's I-induced procedure. On the other hand, the effect on the Moran's I due to heterogeneity in the observations enables a regression model checking procedure with the residuals. This novel application of Moran's I is justified by simulation and illustrated by an analysis of wildfire records from Alberta, Canada.
引用
收藏
页码:244 / 267
页数:24
相关论文
共 50 条
  • [21] Spatio-temporal consideration of the impact of flood event types on flood statistic
    Fischer, Svenja
    Schumann, Andreas
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2020, 34 (09) : 1331 - 1351
  • [22] Test for Spatio-Temporal Counts Being Poisson
    Chen, Haiyan
    Stratton, Howard H.
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2008, 7 (01) : 259 - 274
  • [23] Spatio-temporal modeling of perimetric test data
    Ibanez, M. V.
    Simo, A.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2007, 16 (06) : 497 - 522
  • [24] Sex & vision I: Spatio-temporal resolution
    Israel Abramov
    James Gordon
    Olga Feldman
    Alla Chavarga
    Biology of Sex Differences, 3
  • [25] The LICORS Cabinet: Nonparametric Light Cone Methods for Spatio-Temporal Modeling
    Montanez, George D.
    Shalizi, Cosma Rohilla
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2811 - 2819
  • [26] Sex & vision I: Spatio-temporal resolution
    Abramov, Israel
    Gordon, James
    Feldman, Olga
    Chavarga, Alla
    BIOLOGY OF SEX DIFFERENCES, 2012, 3
  • [27] VectAbundance: a spatio-temporal database of Aedes mosquitoes observations
    Da Re, Daniele
    Marini, Giovanni
    Bonannella, Carmelo
    Laurini, Fabrizio
    Manica, Mattia
    Anicic, Nikoleta
    Albieri, Alessandro
    Angelini, Paola
    Arnoldi, Daniele
    Blaha, Marharyta
    Bertola, Federica
    Caputo, Beniamino
    De Liberato, Claudio
    della Torre, Alessandra
    Flacio, Eleonora
    Franceschini, Alessandra
    Gradoni, Francesco
    Kadriaj, Perparim
    Lencioni, Valeria
    Del Lesto, Irene
    La Russa, Francesco
    Lia, Riccardo Paolo
    Montarsi, Fabrizio
    Otranto, Domenico
    L'Ambert, Gregory
    Rizzoli, Annapaola
    Rombola, Pasquale
    Romiti, Federico
    Stancher, Gionata
    Torina, Alessandra
    Velo, Enkelejda
    Virgillito, Chiara
    Zandonai, Fabiana
    Rosa, Roberto
    SCIENTIFIC DATA, 2024, 11 (01)
  • [28] The nonparametric estimation of long memory spatio-temporal random field models
    WANG LiHong
    ScienceChina(Mathematics), 2015, 58 (05) : 1115 - 1128
  • [29] The nonparametric estimation of long memory spatio-temporal random field models
    LiHong Wang
    Science China Mathematics, 2015, 58 : 1115 - 1128
  • [30] Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling
    Sosic, Adrian
    Zoubir, Abdelhak M.
    Rueckert, Elmar
    Peters, Jan
    Koeppl, Heinz
    JOURNAL OF MACHINE LEARNING RESEARCH, 2018, 19