Tessellated continuum mechanics: A Galerkin finite element method

被引:3
|
作者
Davey, K. [1 ]
Jiang, C. [1 ]
Prosser, R. [1 ]
机构
[1] Univ Manchester, Sch Mech Aerosp & Civil Engn, Manchester M13 9PL, Lancs, England
关键词
Heat transfer; Transport theory; Porous fractals; Numerical solutions; HEAT-EXCHANGERS; POROUS-MEDIA; FRACTAL MEDIA; PRESSURE-DROP; MEDIUM MODEL; FLOW; SIMULATION; FOAMS;
D O I
10.1016/j.compstruc.2016.07.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper tests the hypothesis that the tessellation used in tessellated continuum mechanics can form a mesh in a continuous Galerkin finite element method. Although the tessellation is not unique, neither is it arbitrary, and its construction imposes constraints on any numerical analysis. A distinctive feature of the tessellation is that it can possess highly distorted elements yet-as a consequence of associated anisotropy in material properties-can still return accurate results. The numerical procedure is tested on classical fractal porous geometries to demonstrate the potential of the method, and also illustrate the capability for analysis of disparate porous materials on continua. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:157 / 183
页数:27
相关论文
共 50 条
  • [1] ZIENKIEWICZ,OC - FINITE ELEMENT METHOD IN STRUCTURAL AND CONTINUUM MECHANICS
    SCHNELL, W
    ZEITSCHRIFT FUR FLUGWISSENSCHAFTEN, 1967, 15 (11): : 446 - &
  • [2] ZIENKIEWICZ,OC - FINITE ELEMENT METHOD IN STRUCTURAL AND CONTINUUM MECHANICS
    LIVESLEY, RK
    JOURNAL OF THE ROYAL AERONAUTICAL SOCIETY, 1967, 71 (681): : 659 - &
  • [3] Fracture mechanics analysis using the wavelet Galerkin method and extended finite element method
    Tanaka, S.
    Okada, H.
    Okazawa, S.
    Fujikubo, M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2013, 93 (10) : 1082 - 1108
  • [4] Semianalytic finite-element method in problems of nonlinear continuum mechanics
    Bazhenov, VA
    Gulyar, AI
    INTERNATIONAL APPLIED MECHANICS, 2003, 39 (04) : 402 - 437
  • [5] Semianalytic Finite-Element Method in Problems of Nonlinear Continuum Mechanics
    V. A. Bazhenov
    A. I. Gulyar
    International Applied Mechanics, 2003, 39 : 402 - 437
  • [6] The moment scheme of the finite-element method in problems of nonlinear continuum mechanics
    Bazhenov, V.A.
    Sakharov, A.S.
    Tsykhanovskij, V.K.
    Prikladnaya Mekhanika, 2002, 38 (06): : 24 - 63
  • [7] THE ATOMIC FINITE ELEMENT METHOD AS A BRIDGE BETWEEN MOLECULAR DYNAMICS AND CONTINUUM MECHANICS
    Neugebauer, R.
    Wertheim, R.
    Semmler, U.
    JOURNAL OF MULTISCALE MODELLING, 2011, 3 (1-2) : 39 - 47
  • [8] Galerkin finite block method in solid mechanics
    Wen, J. C.
    Zhou, Y. R.
    Sladek, J.
    Sladek, V.
    Wen, P. H.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 156 : 66 - 79
  • [9] Finite element modeling of tessellated beams
    Elsayed, Mohamed Ezz Abdelmoneim F.
    Crocker, Grace F. E.
    Ross, Brandon E.
    Okumus, Pinar
    Kleiss, Michael Carlos
    Elhami-Khorasani, Negar
    JOURNAL OF BUILDING ENGINEERING, 2022, 46
  • [10] Strongly orthotropic continuum mechanics and finite element treatment
    Kellermann, D. C.
    Furukawa, T.
    Kelly, D. W.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (12) : 1840 - 1868