Solutions for a quasilinear Schrodinger equation: a dual approach

被引:527
作者
Colin, M
Jeanjean, L
机构
[1] Univ Franche Comte, Equipe Math, CNRS, UMR 6623, F-25030 Besancon, France
[2] Univ Paris Sud, Dept Math, Van Nuys, CA 91405 USA
关键词
quasilinear Schrodinger equations; minimax methods;
D O I
10.1016/j.na.2003.09.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider quasilinear stationary Schrodinger equations of the form -Deltau-Delta(u(2))u = g(x,u), x is an element of R-N. (1) Introducing a change of unknown, we transform the search of solutions u(x) of (1) into the search of solutions v(x) of the semilinear equation -Deltav = 1/root1+2f(2)(v) g(x, f (v)), x is an element of R-N, (2) where f is suitably chosen. If v is a classical solution of (2) then u=f(v) is a classical solution of (1). Variational methods are then used to obtain various existence results. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:213 / 226
页数:14
相关论文
共 12 条
[1]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[2]  
BERESTYCKI H, 1983, CR ACAD SCI I-MATH, V297, P307
[3]   Electron self-trapping in a discrete two-dimensional lattice [J].
Brizhik, L ;
Eremko, A ;
Piette, B ;
Zakrzewski, W .
PHYSICA D, 2001, 159 (1-2) :71-90
[4]  
Colin M., 2003, Adv. Differential Equations, V8, P1
[5]  
Ekeland I, 1990, CONVEXITY METHODS HA
[6]   A remark on least energy solutions in RN [J].
Jeanjean, L ;
Tanaka, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (08) :2399-2408
[7]  
JEANJEAN L, IN PRESS ADV NONLINE
[8]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P109
[9]   Soliton solutions for quasilinear Schrodinger equations, I [J].
Liu, JQ ;
Wang, ZQ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (02) :441-448
[10]   Soliton solutions for quasilinear Schrodinger equations, II [J].
Liu, JQ ;
Wang, YQ ;
Wang, ZQ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 187 (02) :473-493