CONVERGENCE PROPERTY OF AN INTERIOR PENALTY APPROACH TO PRICING AMERICAN OPTION

被引:23
作者
Zhang, Kai [1 ,2 ]
Wang, Song [3 ]
机构
[1] Shenzhen Univ, Sch Business, Shenzhen 518060, Peoples R China
[2] Guosen Secur Co Ltd, Postdoctoral Programme, Shenzhen 518060, Peoples R China
[3] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
基金
中国国家自然科学基金;
关键词
Complementarity Problem; Variational Inequalities; Option Pricing; Penalty Method;
D O I
10.3934/jimo.2011.7.435
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper establishes a convergence theory for an interior penalty method for a linear complementarity problem governing American option valuation. By introducing an interior penalty term, we first transform the complementarity problem into a nonlinear degenerated Black-Scholes PDE. We then prove that the PDE is uniquely solvable and its solution converges to that of the original complementarity problem. Furthermore, we demonstrate the advantages of the interior penalty method over exterior penalty methods by comparing it with an existing exterior penalty method.
引用
收藏
页码:435 / 447
页数:13
相关论文
共 19 条
[11]  
Huang J., 1998, J COMPUT FINANC, V2, P31
[12]   A linearly implicit predictor-corrector scheme for pricing American options using a penalty method approach [J].
Khaliq, AQM ;
Voss, DA ;
Kazmi, SHK .
JOURNAL OF BANKING & FINANCE, 2006, 30 (02) :489-502
[13]  
Nielsen BF., 2002, J COMPUT FINANC, V5, P69, DOI DOI 10.21314/JCF.2002.084
[14]   Penalty methods for the numerical solution of American multi-asset option problems [J].
Nielsen, Bjorn Fredrik ;
Skavhaug, Ola ;
Tveito, Aslak .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 222 (01) :3-16
[15]   Power penalty method for a linear complementarity problem arising from American option valuation [J].
Wang, S. ;
Yang, X. Q. ;
Teo, K. L. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 129 (02) :227-254
[16]  
Wilmott Paul., 1994, Option Pricing: Mathematical Models and Computation
[17]  
Zhang K, 2009, NUMER MATH-THEORY ME, V2, P202
[18]  
Zhang K, 2008, J IND MANAG OPTIM, V4, P783
[19]   Penalty methods for American options with stochastic volatility [J].
Zvan, R ;
Forsyth, PA ;
Vetzal, KR .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 91 (02) :199-218