CONVERGENCE PROPERTY OF AN INTERIOR PENALTY APPROACH TO PRICING AMERICAN OPTION

被引:22
作者
Zhang, Kai [1 ,2 ]
Wang, Song [3 ]
机构
[1] Shenzhen Univ, Sch Business, Shenzhen 518060, Peoples R China
[2] Guosen Secur Co Ltd, Postdoctoral Programme, Shenzhen 518060, Peoples R China
[3] Univ Western Australia, Sch Math & Stat, Crawley, WA 6009, Australia
基金
中国国家自然科学基金;
关键词
Complementarity Problem; Variational Inequalities; Option Pricing; Penalty Method;
D O I
10.3934/jimo.2011.7.435
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper establishes a convergence theory for an interior penalty method for a linear complementarity problem governing American option valuation. By introducing an interior penalty term, we first transform the complementarity problem into a nonlinear degenerated Black-Scholes PDE. We then prove that the PDE is uniquely solvable and its solution converges to that of the original complementarity problem. Furthermore, we demonstrate the advantages of the interior penalty method over exterior penalty methods by comparing it with an existing exterior penalty method.
引用
收藏
页码:435 / 447
页数:13
相关论文
共 19 条
  • [1] [Anonymous], 1984, Numerical Methods for Nonlinear Variational Problems
  • [2] [Anonymous], 1999, Theory, Methods and Applications, Nonconvex Optim. Appl.
  • [3] Bensoussan A., 1982, Application of variational inequalities in stochastic control
  • [4] PRICING OF OPTIONS AND CORPORATE LIABILITIES[J]. BLACK, F;SCHOLES, M. JOURNAL OF POLITICAL ECONOMY, 1973(03)
  • [5] VALUATION OF AMERICAN PUT OPTIONS[J]. BRENNAN, MJ;SCHWARTZ, ES. JOURNAL OF FINANCE, 1977(02)
  • [6] OPTION PRICING - SIMPLIFIED APPROACH[J]. COX, JC;ROSS, SA;RUBINSTEIN, M. JOURNAL OF FINANCIAL ECONOMICS, 1979(03)
  • [7] DAUVAUT G, 1976, INEQUALITIES MECH PH
  • [8] Dempster M., 1998, J COMPUT FINANC, V2, P61
  • [9] ELLIOT EM, 1982, WEAK VARIATIONAL MET
  • [10] Quadratic convergence for valuing American options using a penalty method[J]. Forsyth, PA;Vetzal, KR. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2002(06)