Spectral inclusion properties of the numerical range in a space with an indefinite metric

被引:23
作者
Wu, Deyu [1 ]
Chen, Alatancang [1 ]
机构
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
关键词
The numerical range; The (sic)-numerical range; The indefinite inner product space; The uniformly (sic)-positive operator; INNER-PRODUCT; OPERATORS; GEOMETRY;
D O I
10.1016/j.laa.2011.02.053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the numerical range of operators (possibly unbounded) in an indefinite inner product space is studied. In particular, we show that the spectrums of bounded positive operators (or the spectrum of unbounded uniformly (sic)-positive operators) are contained in the closure of the (sic)-numerical range. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1131 / 1136
页数:6
相关论文
共 10 条
[1]  
Azizov TY., 1989, Linear operators in spaces with and indefinite metric
[2]  
BAYASGALAN T, 1991, ACTA MATH HUNG, V57, P7
[3]   On the geometry of numerical ranges in spaces with an indefinite inner product [J].
Bebiano, N ;
Lemos, R ;
da Providência, J ;
Soares, G .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 399 :17-34
[4]   On generalized numerical ranges of operators on an indefinite inner product space [J].
Bebiano, N ;
Lemos, R ;
da Providência, J ;
Soares, G .
LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (3-4) :203-233
[5]  
Bognar J., 1974, Indefinite Inner Product Spaces
[6]   GEOMETRY OF THE NUMERICAL RANGE OF MATRICES [J].
FIEDLER, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1981, 37 (APR) :81-96
[7]  
Li C.-K., 1996, Electron. J. Linear Algebra, V1, P1
[8]  
Li e C.-K., 1998, Electron. J. Linear Algebra, V3, P31
[9]  
Tam T.Y., 2001, J AUSTR MATH SOC, V71, P1
[10]  
Tam TY, 2001, TAIWAN J MATH, V5, P497