Droplet epitaxy symmetric InAs/InP quantum dots for quantum emission in the third telecom window: morphology, optical and electronic properties

被引:19
作者
Holewa, Pawel [1 ,2 ]
Kadkhodazadeh, Shima [3 ,4 ]
Gawelczyk, Michal [5 ,6 ]
Baluta, Pawel [2 ]
Musial, Anna [2 ]
Dubrovskii, Vladimir G. [7 ]
Syperek, Marcin [2 ]
Semenova, Elizaveta [1 ,4 ]
机构
[1] Tech Univ Denmark, DTU Foton, DK-2800 Lyngby, Denmark
[2] Wroclaw Univ Sci & Technol, Lab Opt Spect Nanostruct, Dept Expt Phys, Fac Fundamental Problems Technol, Wyspianskiego 27, PL-50370 Wroclaw, Poland
[3] Tech Univ Denmark, DTU Nanolab, Natl Ctr Nano Fabricat & Characterizat, DK-2800 Lyngby, Denmark
[4] Tech Univ Denmark, NanoPhoton Ctr Nanophoton, DK-2800 Lyngby, Denmark
[5] Wroclaw Univ Sci & Technol, Fac Fundamental Problems Technol, Dept Theoret Phys, PL-50370 Wroclaw, Poland
[6] Nicolaus Copernicus Univ Torun, Fac Phys Astron & Informat, Inst Phys, Ul Grudziadzka 5, PL-87100 Torun, Poland
[7] St Petersburg State Univ, Fac Phys, Univ Skaya Embankment 13B, St Petersburg 199034, Russia
基金
新加坡国家研究基金会;
关键词
near-infrared spectroscopy; quantum dots; quantum telecommunication; single-photon sources; LIFETIME; PAIRS;
D O I
10.1515/nanoph-2021-0482
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The rapidly developing quantum communication technology requires deterministic quantum emitters that can generate single photons and entangled photon pairs in the third telecom window, in order to be compatible with existing optical fiber networks and on-chip silicon photonic processors. InAs/InP quantum dots (QDs) are among the leading candidates for this purpose, due to their high emission efficiency in the required spectral range. However, fabricating versatile InAs/InP QD-based quantum emitters is challenging, especially as these QDs typically have asymmetric profiles in the growth plane, resulting in a substantial bright-exciton fine structure splitting (FSS). This hinders the generation of entangled photon pairs and thus, compromises the versatility of InAs/InP QDs. We overcome this by implementing droplet epitaxy (DE) synthesis of low surface density (2.8 x 10(8) cm(-2)) InAs x P1-x QDs with x = (80 +/- 15)% on an (001)-oriented InP substrate. The resulting QDs are located in etched pits, have concave bases, and most importantly, have symmetric in-plane profiles. We provide an analytical model to explain the kinetics of pit formation and QD base shape modification. Our theoretical calculations of electronic states reveal the properties of neutral and charged excitons and biexcitons confined in such QDs, which agree with the optical investigations of individual QDs. The optical response of QDs' ensemble suggests that FSS may indeed be negligible, as reflected in the vanishing degree of linear polarization. However, single QD spectrum gathered from an etched mesa shows moderate FSS of (50 +/- 5) mu eV that we link to destructive changes made in the QD environment during the post-growth processing. Finally, we show that the studied DE QDs provide a close-to-ideal single-photon emission purity of (92.5 +/- 7.5)% in the third telecom window.
引用
收藏
页码:1515 / 1526
页数:12
相关论文
共 60 条
[1]   Poissonian statistics of excitonic complexes in quantum dots [J].
Abbarchi, M. ;
Mastrandrea, C. ;
Kuroda, T. ;
Mano, T. ;
Vinattieri, A. ;
Sakoda, K. ;
Gurioli, M. .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (05)
[2]  
Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/nphoton.2016.186, 10.1038/NPHOTON.2016.186]
[3]   Coherence in single photon emission from droplet epitaxy and Stranski-Krastanov quantum dots in the telecom C-band [J].
Anderson, M. ;
Mueller, T. ;
Skiba-Szymanska, J. ;
Krysa, A. B. ;
Huwer, J. ;
Stevenson, R. M. ;
Heffernan, J. ;
Ritchie, D. A. ;
Shields, A. J. .
APPLIED PHYSICS LETTERS, 2021, 118 (01)
[4]   Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview [J].
Arakawa, Yasuhiko ;
Holmes, Mark J. .
APPLIED PHYSICS REVIEWS, 2020, 7 (02)
[5]   Quantum-dot exciton dynamics probed by photon-correlation spectroscopy [J].
Baier, M. H. ;
Malko, A. ;
Pelucchi, E. ;
Oberli, D. Y. ;
Kapon, E. .
PHYSICAL REVIEW B, 2006, 73 (20)
[6]   Quantum key distribution with entangled photons generated on demand by a quantum dot [J].
Basset, Francesco Basso ;
Valeri, Mauro ;
Roccia, Emanuele ;
Muredda, Valerio ;
Poderini, Davide ;
Neuwirth, Julia ;
Spagnolo, Nicolo ;
Rota, Michele B. ;
Carvacho, Gonzalo ;
Sciarrino, Fabio ;
Trotta, Rinaldo .
SCIENCE ADVANCES, 2021, 7 (12)
[7]   THE JUSTIFICATION FOR APPLYING THE EFFECTIVE-MASS APPROXIMATION TO MICROSTRUCTURES [J].
BURT, MG .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (32) :6651-6690
[8]   Telecom wavelength single photon sources [J].
Cao, Xin ;
Zopf, Michael ;
Ding, Fei .
JOURNAL OF SEMICONDUCTORS, 2019, 40 (07)
[9]   Growth of self-assembled InAs and InAsxP1-x dots on InP by metalorganic vapour phase epitaxy [J].
Carlsson, N ;
Junno, T ;
Montelius, L ;
Pistol, ME ;
Samuelson, L ;
Seifert, W .
JOURNAL OF CRYSTAL GROWTH, 1998, 191 (03) :347-356
[10]   Origin of nonlinear piezoelectricity in III-V semiconductors: Internal strain and bond ionicity from hybrid-functional density functional theory [J].
Caro, Miguel A. ;
Schulz, Stefan ;
O'Reilly, Eoin P. .
PHYSICAL REVIEW B, 2015, 91 (07)