Graphene-Based 3D Printed Single Patch Antenna

被引:5
作者
Monne, Mahmuda Akter [1 ]
Jewel, Mohi Uddin [2 ]
Wang, Zhou [3 ]
Chen, Maggie Yihong [1 ,2 ]
机构
[1] Texas State Univ, Mat Sci Engn & Commercializat, San Marcos, TX 78666 USA
[2] Texas State Univ, Ingram Sch Engn, San Marcos, TX 00555 USA
[3] Changan Univ, Sch Mat Sci & Engn, Xian 710061, Shaanxi, Peoples R China
来源
LOW-DIMENSIONAL MATERIALS AND DEVICES | 2018年 / 10725卷
关键词
Graphene ink; Inkjet printing; Polyimide film; Single patch antenna; Microstrip antenna; Raman spectroscopy; Scanning electron microscopy; Viscosity; MICROSTRIP ANTENNA; GAP; DESIGN;
D O I
10.1117/12.2323546
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a novel approach for the design and fabrication of graphene-based and fully printed single patch antennas. Graphene ink for inkjet printing is prepared by dispersing graphene nano flakes (12 nm) into terpineol and cyclohexanone solvents, and ethyl cellulose surfactant. The viscosity of the as-synthesized graphene ink is found to be 5.5 cP which is compatible with the inkjet printing. Raman spectroscopy is used to provide a structural fingerprint of the printed graphene flakes. Additionally, the printed graphene patterns become conductive for 35-40 printed layers. The physical structure of the single patch antenna consists of a printed transmission line and a single patch. The resonant frequency for the inkjet-printed graphene single patch antenna on DuPont (TM) Kapton (R) FPC Polyimide substrate is 5 GHz, which is consistent with the design. The performance of printed graphene antenna is compared with the transferred graphene and printed silver antennas. The printed graphene antenna shows a better gain of 4.47 dBi and efficiency of 70%.
引用
收藏
页数:6
相关论文
共 33 条
  • [1] BROAD-BAND GAP COUPLED MICROSTRIP ANTENNA
    AANANDAN, CK
    MOHANAN, P
    NAIR, KG
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1990, 38 (10) : 1581 - 1586
  • [2] [Anonymous], INT J COMPUT APPL
  • [3] HYBRID EDGE, GAP AND DIRECTLY COUPLED TRIANGULAR MICROSTRIP ANTENNA
    BHATNAGAR, PS
    DANIEL, JP
    MAHDJOUBI, K
    TERRET, C
    [J]. ELECTRONICS LETTERS, 1986, 22 (16) : 853 - 855
  • [4] Graphene-based liquid crystal device
    Blake, Peter
    Brimicombe, Paul D.
    Nair, Rahul R.
    Booth, Tim J.
    Jiang, Da
    Schedin, Fred
    Ponomarenko, Leonid A.
    Morozov, Sergey V.
    Gleeson, Helen F.
    Hill, Ernie W.
    Geim, Andre K.
    Novoselov, Kostya S.
    [J]. NANO LETTERS, 2008, 8 (06) : 1704 - 1708
  • [5] Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage
    Bonaccorso, Francesco
    Colombo, Luigi
    Yu, Guihua
    Stoller, Meryl
    Tozzini, Valentina
    Ferrari, Andrea C.
    Ruoff, Rodney S.
    Pellegrini, Vittorio
    [J]. SCIENCE, 2015, 347 (6217)
  • [6] MICROSTRIP ANTENNA TECHNOLOGY
    CARVER, KR
    MINK, JW
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1981, 29 (01) : 2 - 24
  • [7] Broadband L-probe fed patch antenna combined with passive loop elements
    Da Costa, Karlo Queiroz
    Dmitriev, Victor
    Nascimento, D. C.
    Lacava, J. C. da S.
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2007, 6 (100-102): : 100 - 102
  • [8] Electrochemical DNA sensors
    Drummond, TG
    Hill, MG
    Barton, JK
    [J]. NATURE BIOTECHNOLOGY, 2003, 21 (10) : 1192 - 1199
  • [9] Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane
    Elias, D. C.
    Nair, R. R.
    Mohiuddin, T. M. G.
    Morozov, S. V.
    Blake, P.
    Halsall, M. P.
    Ferrari, A. C.
    Boukhvalov, D. W.
    Katsnelson, M. I.
    Geim, A. K.
    Novoselov, K. S.
    [J]. SCIENCE, 2009, 323 (5914) : 610 - 613
  • [10] Enuka E., 2017, ADV FUNCTIONAL MAT