On the sampling of three-dimensional polycrystalline microstructures for distribution determination

被引:26
作者
Luan, J. [1 ]
Liu, G. [1 ,2 ]
Wang, H. [1 ]
Ullah, A. [1 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[3] Karakoram Int Univ Gilgit Baltistan, Dept Math, Gilgit, Pakistan
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Three-dimensional microstructure; distribution parameter; grain topology; grain size; Monte Carlo simulation; sampling strategy; GRAIN-SIZE DISTRIBUTION; COMPUTER-SIMULATION; AUTOMATED-ANALYSIS; MICRO STRUCTURES; GROWTH; RECONSTRUCTION; FRAMEWORK; TOPOLOGY; SECTION; VOLUME;
D O I
10.1111/j.1365-2818.2011.03531.x
中图分类号
TH742 [显微镜];
学科分类号
摘要
How to sample three-dimensional microstructure and effectively reduce experimental error is a challenging problem. Taking seven single-phase polycrystalline structures generated by 400x400x400 Potts Monte Carlo simulation as the study object, effects of sampling strategy on the determination of various characteristic parameters of the grain size distribution and grain topology distribution are studied. The mean voxel value ( or volume) of individual grains in the three-dimensional simulated microstructure varies from 4.56x10(4) to 1.0x10(3), and the number of grains contained in the structure varies from 63 901 to 1403. The results show that, a minimum of 200 sampled grains can ensure the relative error to be less than 5% for determination of the mean grain volume, the mean grain face number and the coefficient of variance of the distribution of grain size and the grain face number. Whereas for the coefficient of the skewness and the kurtosis of grain size distribution or grain face number distribution, a minimum of 800 sampled grains are required for the same error level. However, if some exceptional big grains appear, e.g. a grain larger than with eight multiples of mean grain volume and/or three multiples of mean grain face number, abnormal values of the two parameters would be resulted, even the number of examined grains is over 1000.
引用
收藏
页码:214 / 222
页数:9
相关论文
共 28 条
[1]   COMPUTER-SIMULATION OF NORMAL GRAIN-GROWTH IN 3 DIMENSIONS [J].
ANDERSON, MP ;
GREST, GS ;
SROLOVITZ, DJ .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1989, 59 (03) :293-329
[2]   THEORIES OF NORMAL GRAIN-GROWTH IN PURE SINGLE-PHASE SYSTEMS [J].
ATKINSON, HV .
ACTA METALLURGICA, 1988, 36 (03) :469-491
[3]   QUANTITATIVE SERIAL SECTIONING ANALYSIS - PREVIEW [J].
DEHOFF, RT .
JOURNAL OF MICROSCOPY-OXFORD, 1983, 131 (SEP) :259-263
[4]   ON THE RELATION BETWEEN GRAIN-SIZE AND GRAIN TOPOLOGY [J].
DEHOFF, RT ;
GUO, QL .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1985, 16 (11) :2007-2011
[5]  
Desch CH, 1919, J I MET, V22, P241
[6]   Fatigue resistance of the grain size transition zone in a dual microstructure superalloy disk [J].
Gabb, T. P. ;
Kantzos, P. T. ;
Telesman, J. ;
Gayda, J. ;
Sudbrack, C. K. ;
Palsa, B. .
INTERNATIONAL JOURNAL OF FATIGUE, 2011, 33 (03) :414-426
[7]   CAD-based reconstruction of 3D polycrystalline alloy microstructures from FIB generated serial sections [J].
Ghosh, S. ;
BlIandari, Y. ;
Groeber, M. .
COMPUTER-AIDED DESIGN, 2008, 40 (03) :293-310
[8]   3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system [J].
Groeber, M. A. ;
Haley, B. K. ;
Uchic, M. D. ;
Dimiduk, D. M. ;
Ghosh, S. .
MATERIALS CHARACTERIZATION, 2006, 57 (4-5) :259-273
[9]   A framework for automated analysis and simulation of 3D polycrystalline micro structures. Part 1: Statistical characterization [J].
Groeber, Michael ;
Ghosh, Somnath ;
Uchic, Michael D. ;
Dimiduk, Dennis M. .
ACTA MATERIALIA, 2008, 56 (06) :1257-1273
[10]   A framework for automated analysis and simulation of 3D polycrystalline micro structures. Part 2: Synthetic structure generation [J].
Groeber, Michael ;
Ghosh, Somnath ;
Uchic, Michael D. ;
Dimiduk, Dennis M. .
ACTA MATERIALIA, 2008, 56 (06) :1274-1287