Tailoring Thermal Conductivity of Ge/Si Core-Shell Nanowires

被引:0
作者
Sarikurt, Sevil [1 ,5 ]
Sevik, Cem [2 ]
Kinaci, Alper [3 ,5 ]
Haskins, Justin B. [4 ,5 ]
Cagin, Tahir [4 ,5 ]
机构
[1] Dokuz Eylul Univ, Dept Phys, Fac Sci, TR-35390 Izmir, Turkey
[2] Anadolu Univ, Dept Mech Engn, Fac Engn, TR-26555 Eskisehir, Turkey
[3] Argonne Natl Lab, Argonne, IL 60439 USA
[4] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[5] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
来源
Proceedings of the TMS Middle East - Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015) | 2015年
关键词
Ge/Si core-shell nanowires; thermal conductivity; thermoelectrics; NANOSCALE ELECTRONIC DEVICES; SILICON NANOWIRES; TRANSPORT-COEFFICIENTS; MOLECULAR-DYNAMICS; CARBON NANOTUBES; HETEROSTRUCTURES;
D O I
10.1002/9781119090427.ch46
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Low-dimensional nanostructured materials show large variation in their thermal transport properties. Here, we investigate the influence of core-shell architecture on nanowire ( NW) thermal conductivity using molecular dynamics with Tersoff potentials Si-Ge, to design structures with desired thermal conductivity for thermoelectric device applications. To explore the parameter space, we have calculated thermal conductivity values of Ge/Si core-shell NWs having different lengths, cross-section sizes and Ge concentrations at several temperatures. We have found that ( 1) increasing the cross-sectional area of pure Si NW causes an increase in thermal conductivity ( 2) increasing the Ge core size in the Ge/Si structure results in a decrease in the thermal conductivity values at 300. ( 3) there is no significant variation in the thermal conductivity of Si NW for temperature values larger than 300. ( 4) the predicted thermal conductivity around 10 W m(-1)K(-1) is still larger than the value convenient for thermoelectric applications.
引用
收藏
页码:433 / 440
页数:8
相关论文
共 28 条
  • [1] Allen M. P., 1987, COMPUTER SIMULATION
  • [2] Nanoscale electronic devices on carbon nanotubes
    Collins, PG
    Bando, H
    Zettl, A
    [J]. NANOTECHNOLOGY, 1998, 9 (03) : 153 - 157
  • [3] Functional nanoscale electronic devices assembled using silicon nanowire building blocks
    Cui, Y
    Lieber, CM
    [J]. SCIENCE, 2001, 291 (5505) : 851 - 853
  • [4] Temperature Dependence of the Thermal Conductivity of Thin Silicon Nanowires
    Donadio, Davide
    Galli, Giulia
    [J]. NANO LETTERS, 2010, 10 (03) : 847 - 851
  • [5] Dresselhaus MS, 2001, SEMICONDUCT SEMIMET, V71, P1
  • [6] Thermal conductivity of Si-Ge quantum dot superlattices
    Haskins, J. B.
    Kinaci, A.
    Cagin, T.
    [J]. NANOTECHNOLOGY, 2011, 22 (15)
  • [7] Control of Thermal and Electronic Transport in Defect-Engineered Graphene Nanoribbons
    Haskins, Justin
    Kinaci, Alper
    Sevik, Cem
    Sevincli, Haldun
    Cuniberti, Gianaurelio
    Cagin, Tahir
    [J]. ACS NANO, 2011, 5 (05) : 3779 - 3787
  • [8] Equilibrium limit of thermal conduction and boundary scattering in nanostructures
    Haskins, Justin B.
    Kinaci, Alper
    Sevik, Cem
    Cagin, Tahir
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (24)
  • [9] TRANSPORT COEFFICIENTS FROM DISSIPATION IN A CANONICAL ENSEMBLE
    HELFAND, E
    [J]. PHYSICAL REVIEW, 1960, 119 (01): : 1 - 9
  • [10] THERMOELECTRIC FIGURE OF MERIT OF A ONE-DIMENSIONAL CONDUCTOR
    HICKS, LD
    DRESSELHAUS, MS
    [J]. PHYSICAL REVIEW B, 1993, 47 (24): : 16631 - 16634