Tailoring Thermal Conductivity of Ge/Si Core-Shell Nanowires

被引:0
作者
Sarikurt, Sevil [1 ,5 ]
Sevik, Cem [2 ]
Kinaci, Alper [3 ,5 ]
Haskins, Justin B. [4 ,5 ]
Cagin, Tahir [4 ,5 ]
机构
[1] Dokuz Eylul Univ, Dept Phys, Fac Sci, TR-35390 Izmir, Turkey
[2] Anadolu Univ, Dept Mech Engn, Fac Engn, TR-26555 Eskisehir, Turkey
[3] Argonne Natl Lab, Argonne, IL 60439 USA
[4] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
[5] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
来源
Proceedings of the TMS Middle East - Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015) | 2015年
关键词
Ge/Si core-shell nanowires; thermal conductivity; thermoelectrics; NANOSCALE ELECTRONIC DEVICES; SILICON NANOWIRES; TRANSPORT-COEFFICIENTS; MOLECULAR-DYNAMICS; CARBON NANOTUBES; HETEROSTRUCTURES;
D O I
10.1002/9781119090427.ch46
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Low-dimensional nanostructured materials show large variation in their thermal transport properties. Here, we investigate the influence of core-shell architecture on nanowire ( NW) thermal conductivity using molecular dynamics with Tersoff potentials Si-Ge, to design structures with desired thermal conductivity for thermoelectric device applications. To explore the parameter space, we have calculated thermal conductivity values of Ge/Si core-shell NWs having different lengths, cross-section sizes and Ge concentrations at several temperatures. We have found that ( 1) increasing the cross-sectional area of pure Si NW causes an increase in thermal conductivity ( 2) increasing the Ge core size in the Ge/Si structure results in a decrease in the thermal conductivity values at 300. ( 3) there is no significant variation in the thermal conductivity of Si NW for temperature values larger than 300. ( 4) the predicted thermal conductivity around 10 W m(-1)K(-1) is still larger than the value convenient for thermoelectric applications.
引用
收藏
页码:433 / 440
页数:8
相关论文
共 28 条
[1]  
Allen M. P., 1987, COMPUTER SIMULATION
[2]   Nanoscale electronic devices on carbon nanotubes [J].
Collins, PG ;
Bando, H ;
Zettl, A .
NANOTECHNOLOGY, 1998, 9 (03) :153-157
[3]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[4]   Temperature Dependence of the Thermal Conductivity of Thin Silicon Nanowires [J].
Donadio, Davide ;
Galli, Giulia .
NANO LETTERS, 2010, 10 (03) :847-851
[5]  
Dresselhaus MS, 2001, SEMICONDUCT SEMIMET, V71, P1
[6]   Thermal conductivity of Si-Ge quantum dot superlattices [J].
Haskins, J. B. ;
Kinaci, A. ;
Cagin, T. .
NANOTECHNOLOGY, 2011, 22 (15)
[7]   Control of Thermal and Electronic Transport in Defect-Engineered Graphene Nanoribbons [J].
Haskins, Justin ;
Kinaci, Alper ;
Sevik, Cem ;
Sevincli, Haldun ;
Cuniberti, Gianaurelio ;
Cagin, Tahir .
ACS NANO, 2011, 5 (05) :3779-3787
[8]   Equilibrium limit of thermal conduction and boundary scattering in nanostructures [J].
Haskins, Justin B. ;
Kinaci, Alper ;
Sevik, Cem ;
Cagin, Tahir .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (24)
[9]   TRANSPORT COEFFICIENTS FROM DISSIPATION IN A CANONICAL ENSEMBLE [J].
HELFAND, E .
PHYSICAL REVIEW, 1960, 119 (01) :1-9
[10]   THERMOELECTRIC FIGURE OF MERIT OF A ONE-DIMENSIONAL CONDUCTOR [J].
HICKS, LD ;
DRESSELHAUS, MS .
PHYSICAL REVIEW B, 1993, 47 (24) :16631-16634