Machine learning coarse grained models for water

被引:152
作者
Chan, Henry [1 ]
Cherukara, Mathew J. [1 ]
Narayanan, Badri [1 ,3 ]
Loeffler, Troy D. [1 ]
Benmore, Chris [2 ]
Gray, Stephen K. [1 ,4 ]
Sankaranarayanan, Subramanian K. R. S. [1 ,4 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[2] Argonne Natl Lab, X R y Sci Div, Argonne, IL 60439 USA
[3] Univ Louisville, Dept Mech Engn, Louisville, KY 40292 USA
[4] Univ Chicago, Consortium Adv Sci & Engn, Chicago, IL 60637 USA
关键词
LIQUID WATER; CUBIC ICE; STACKING DISORDER; MOLECULAR-MODEL; SELF-DIFFUSION; FREE-ENERGY; TRANSFORMATIONS; CRYSTALLIZATION; TIP4P/2005; NUCLEATION;
D O I
10.1038/s41467-018-08222-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An accurate and computationally efficient molecular level description of mesoscopic behavior of ice-water systems remains a major challenge. Here, we introduce a set of machine-learned coarse-grained (CG) models (ML-BOP, ML-BOPdih, and ML-mW) that accurately describe the structure and thermodynamic anomalies of both water and ice at mesoscopic scales, all at two orders of magnitude cheaper computational cost than existing atomistic models. In a significant departure from conventional force-field fitting, we use a multilevel evolutionary strategy that trains CG models against not just energetics from first-principles and experiments but also temperature-dependent properties inferred from on-the-fly molecular dynamics (-10' s of milliseconds of overall trajectories). Our ML BOP models predict both the correct experimental melting point of ice and the temperature of maximum density of liquid water that remained elusive to-date. Our ML workflow navigates efficiently through the high-dimensional parameter space to even improve upon existing high-quality CG models (e.g. mW model).
引用
收藏
页数:14
相关论文
共 63 条
[1]   A general purpose model for the condensed phases of water: TIP4P/2005 [J].
Abascal, JLF ;
Vega, C .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (23)
[2]   Thermodynamic, Diffusional, and Structural Anomalies in Rigid-Body Water Models [J].
Agarwal, Manish ;
Alam, Mohammad Parvez ;
Chakravarty, Charusita .
JOURNAL OF PHYSICAL CHEMISTRY B, 2011, 115 (21) :6935-6945
[3]   How Cubic Can Ice Be? [J].
Amaya, Andrew J. ;
Pathak, Harshad ;
Modak, Viraj P. ;
Laksmono, Hartawan ;
Loh, N. Duane ;
Sellberg, Jonas A. ;
Sierra, Raymond G. ;
McQueen, Trevor A. ;
Hayes, Matt J. ;
Williams, Garth J. ;
Messerschmidt, Marc ;
Boutet, Sebastien ;
Bogan, Michael J. ;
Nilsson, Anders ;
Stan, Claudiu A. ;
Wyslouzil, Barbara E. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (14) :3216-3222
[4]  
[Anonymous], 2004, CRC HDB CHEM PHYS RE
[5]   Enthalpies of sublimation of organic and organometallic compounds. 1910-2001 [J].
Chickos, JS ;
Acree, WE .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 2002, 31 (02) :537-698
[6]   A hybrid neutron diffraction and computer simulation study on the solvation of N-methylformamide in dimethylsulfoxide [J].
Cordeiro, Joao M. M. ;
Soper, Alan K. .
JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (04)
[7]  
Correction for Malkin, 2012, P NATL ACAD SCI USA, V109, P4020
[8]   Anharmonic Nuclear Motion and the Relative Stability of Hexagonal and Cubic ice [J].
Engel, Edgar A. ;
Monserrat, Bartomeu ;
Needs, Richard J. .
PHYSICAL REVIEW X, 2015, 5 (02)
[9]   The mold integration method for the calculation of the crystal-fluid interfacial free energy from simulations [J].
Espinosa, J. R. ;
Vega, C. ;
Sanz, E. .
JOURNAL OF CHEMICAL PHYSICS, 2014, 141 (13)
[10]   Ice-Water Interfacial Free Energy for the TIP4P, TIP4P/2005, TIP4P/Ice, and mW Models As Obtained from the Mold Integration Technique [J].
Espinosa, Jorge R. ;
Vega, Carlos ;
Sanz, Eduardo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (15) :8068-8075