Advances in thermal conductivity for energy applications: a review

被引:53
作者
Zheng, Qiye [1 ,2 ]
Hao, Menglong [3 ]
Miao, Ruijiao [1 ,2 ]
Schaadt, Joseph [1 ,2 ]
Dames, Chris [1 ,2 ]
机构
[1] Energy Storage & Distributed Resources Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[3] Southeast Univ, Sch Energy & Environm, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing 210096, Peoples R China
来源
PROGRESS IN ENERGY | 2021年 / 3卷 / 01期
基金
美国国家科学基金会;
关键词
thermal conductivity; thermal insulation; heat conduction; PHASE-CHANGE MATERIALS; LITHIUM-ION BATTERIES; 1ST-PRINCIPLES MOLECULAR-DYNAMICS; METAL-MATRIX COMPOSITES; AB-INITIO CALCULATION; MEAN FREE-PATH; HEAT-CONDUCTION; THERMOELECTRIC PERFORMANCE; ELECTRICAL-CONDUCTIVITY; BOUNDARY CONDUCTANCE;
D O I
10.1088/2516-1083/abd082
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thermal conductivity is a crucial material property for a diverse range of energy technologies, ranging from thermal management of high power electronics to thermal insulation for building envelopes. This review discusses recent advances in achieving high and low thermal conductivity (k) as relevant for energy applications, from high-k heat spreaders to low-k insulation. We begin with a brief introduction to the physics of heat conduction from both theoretical and computational perspectives. The heart of the review is a survey of recent advances in high- and low-k materials. The discussion of good heat conductors for thermal management includes inorganics and polymers in both bulk and low dimensional forms. For insulators, the discussion covers the effects of chemical composition, crystal structure, and defects and porosity. Promising areas for future research in both fundamental materials science and engineering technologies are noted.
引用
收藏
页数:42
相关论文
共 521 条
[11]   THERMAL-CONDUCTIVITY AND HEAT-CAPACITY OF AMORPHOUS SIO2 - PRESSURE AND VOLUME DEPENDENCE [J].
ANDERSSON, S ;
DZHAVADOV, L .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1992, 4 (29) :6209-6216
[12]  
[Anonymous], 2005, ORNL/TM-2005/230, DOI DOI 10.2172/885985
[13]  
[Anonymous], 2019, City of Berkeley
[14]  
[Anonymous], 2020, US EIA
[15]   PROPERTIES OF DIAMOND WITH VARYING ISOTOPIC COMPOSITION [J].
ANTHONY, TR ;
BANHOLZER, WF .
DIAMOND AND RELATED MATERIALS, 1992, 1 (5-6) :717-726
[16]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[17]   Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates [J].
Asheghi, M ;
Touzelbaev, MN ;
Goodson, KE ;
Leung, YK ;
Wong, SS .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1998, 120 (01) :30-36
[18]   Thermal conduction in doped single-crystal silicon films [J].
Asheghi, M ;
Kurabayashi, K ;
Kasnavi, R ;
Goodson, KE .
JOURNAL OF APPLIED PHYSICS, 2002, 91 (08) :5079-5088
[19]   A Review of Thermal Conductivity Models for Nanofluids [J].
Aybar, Hikmet S. ;
Sharifpur, Mohsen ;
Azizian, M. Reza ;
Mehrabi, Mehdi ;
Meyer, Josua P. .
HEAT TRANSFER ENGINEERING, 2015, 36 (13) :1085-1110
[20]   Observation of reduced thermal conductivity in a metal-organic framework due to the presence of adsorbates [J].
Babaei, Hasan ;
DeCoster, Mallory E. ;
Jeong, Minyoung ;
Hassan, Zeinab M. ;
Islamoglu, Timur ;
Baumgart, Helmut ;
McGaughey, Alan J. H. ;
Redel, Engelbert ;
Farha, Omar K. ;
Hopkins, Patrick E. ;
Malen, Jonathan A. ;
Wilmer, Christopher E. .
NATURE COMMUNICATIONS, 2020, 11 (01)