Advances in thermal conductivity for energy applications: a review

被引:53
作者
Zheng, Qiye [1 ,2 ]
Hao, Menglong [3 ]
Miao, Ruijiao [1 ,2 ]
Schaadt, Joseph [1 ,2 ]
Dames, Chris [1 ,2 ]
机构
[1] Energy Storage & Distributed Resources Div, Lawrence Berkeley Natl Lab, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[3] Southeast Univ, Sch Energy & Environm, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing 210096, Peoples R China
来源
PROGRESS IN ENERGY | 2021年 / 3卷 / 01期
基金
美国国家科学基金会;
关键词
thermal conductivity; thermal insulation; heat conduction; PHASE-CHANGE MATERIALS; LITHIUM-ION BATTERIES; 1ST-PRINCIPLES MOLECULAR-DYNAMICS; METAL-MATRIX COMPOSITES; AB-INITIO CALCULATION; MEAN FREE-PATH; HEAT-CONDUCTION; THERMOELECTRIC PERFORMANCE; ELECTRICAL-CONDUCTIVITY; BOUNDARY CONDUCTANCE;
D O I
10.1088/2516-1083/abd082
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Thermal conductivity is a crucial material property for a diverse range of energy technologies, ranging from thermal management of high power electronics to thermal insulation for building envelopes. This review discusses recent advances in achieving high and low thermal conductivity (k) as relevant for energy applications, from high-k heat spreaders to low-k insulation. We begin with a brief introduction to the physics of heat conduction from both theoretical and computational perspectives. The heart of the review is a survey of recent advances in high- and low-k materials. The discussion of good heat conductors for thermal management includes inorganics and polymers in both bulk and low dimensional forms. For insulators, the discussion covers the effects of chemical composition, crystal structure, and defects and porosity. Promising areas for future research in both fundamental materials science and engineering technologies are noted.
引用
收藏
页数:42
相关论文
共 521 条
[1]   Minimum thermal conductivity in the context of diffuson-mediated thermal transport [J].
Agne, Matthias T. ;
Hanus, Riley ;
Snyder, G. Jeffrey .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (03) :609-616
[2]   Epoxy-PCM Composites with Nanocarbons or Multidimensional Boron Nitride as Heat Flow Enhancers [J].
Agrawal, Richa ;
Hanna, Joshua ;
Gunduz, I. Emre ;
Luhrs, Claudia C. .
MOLECULES, 2019, 24 (10)
[3]   Development of a ceramic-based composite for direct bonded copper substrate [J].
Akhtar, S. S. ;
Kareem, L. T. ;
Arif, A. F. M. ;
Siddiqui, M. U. ;
Hakeem, A. S. .
CERAMICS INTERNATIONAL, 2017, 43 (06) :5236-5246
[4]   Thermal management of GaN HEMT devices using serpentine minichannel heat sinks [J].
Al-Neama, Ahmed F. ;
Kapur, Nikil ;
Summers, Jonathan ;
Thompson, Harvey M. .
APPLIED THERMAL ENGINEERING, 2018, 140 :622-636
[5]  
Allen M. P., 1987, Computer Simulation of Liquids
[6]   THERMAL-CONDUCTIVITY OF GLASSES - THEORY AND APPLICATION TO AMORPHOUS SI [J].
ALLEN, PB ;
FELDMAN, JL .
PHYSICAL REVIEW LETTERS, 1989, 62 (06) :645-648
[7]   Diffusons, locons and propagons: character of atomic vibrations in amorphous Si [J].
Allen, PB ;
Feldman, JL ;
Fabian, J ;
Wooten, F .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1999, 79 (11-12) :1715-1731
[8]   Improved Callaway model for lattice thermal conductivity [J].
Allen, Philip B. .
PHYSICAL REVIEW B, 2013, 88 (14)
[9]   Theory of the lattice thermal conductivity in bulk and films of GaN [J].
AlShaikhi, A. ;
Barman, Saswati ;
Srivastava, G. P. .
PHYSICAL REVIEW B, 2010, 81 (19)
[10]  
Alves L F S., 2017, 2017 BRAZ POW EL C C, P1