Transport properties of magnetic graphene superlattices with modulated Fermi velocity

被引:4
作者
Bezerra, Icaro S. F. [1 ]
Lima, Jonas R. F. [1 ,2 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Fis, BR-52171900 Recife, PE, Brazil
[2] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
关键词
Magnetic graphene superlattice; Fermi velocity modulation; Continuum model; CONFINEMENT; TRANSITION; GAP;
D O I
10.1016/j.ssc.2021.114511
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this work we investigate theoretically the transport properties of a magnetic graphene superlattice in the presence of a modulation of the Fermi velocity solving the effective Dirac equation. Using the transfer matrix method, we obtain the transmission coefficient of the system. We find that the transport properties are very sensitive to the modulation of the Fermi velocity, being possible, for instance, to obtain different behaviours for the system, such as an incidence angle-dependent miniband and minigap structure or a suppression of the transmission. We also obtain that it is possible to create a magnetic filter that can be controlled by the Fermi velocity. The results obtained her e can be used for the fabrication of graphene-based electronic devices.
引用
收藏
页数:7
相关论文
共 67 条
[31]   Tuning the Fano factor of graphene via Fermi velocity modulation [J].
Lima, Jonas R. F. ;
Barbosa, Anderson L. R. ;
Bezerra, C. G. ;
Pereira, Luiz Felipe C. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 97 :105-110
[32]   Engineering the electronic structure of graphene superlattices via Fermi velocity modulation [J].
Lima, Jonas R. F. .
EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (01)
[33]   Controlling resonant tunneling in graphene via Fermi velocity engineering [J].
Lima, Jonas R. F. ;
Pereira, Luiz Felipe C. ;
Bezerra, C. G. .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (24)
[34]   Electronic structure of a graphene superlattice with a modulated Fermi velocity [J].
Lima, Jonas R. F. .
PHYSICS LETTERS A, 2015, 379 (20-21) :1372-1376
[35]   Electronic structure of a graphene superlattice with massive Dirac fermions [J].
Lima, Jonas R. F. .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (08)
[36]   Controlling the energy gap of graphene by Fermi velocity engineering [J].
Lima, Jonas R. F. .
PHYSICS LETTERS A, 2015, 379 (03) :179-182
[37]   Indirect band gap in graphene from modulation of the Fermi velocity [J].
Lima, Jonas R. F. ;
Moraes, F. .
SOLID STATE COMMUNICATIONS, 2015, 201 :82-87
[38]   Perfect valley filter controlled by Fermi velocity modulation in graphene [J].
Lins, A. R. S. ;
Lima, Jonas R. F. .
CARBON, 2020, 160 (160) :353-360
[39]   Transport properties of graphene under periodic and quasiperiodic magnetic superlattices [J].
Lu, Wei-Tao ;
Wang, Shun-Jin ;
Wang, Yong-Long ;
Jiang, Hua ;
Li, Wen .
PHYSICS LETTERS A, 2013, 377 (19-20) :1368-1372
[40]   Electronic band gaps and transport in aperiodic graphene superlattices of Thue-Morse sequence [J].
Ma, Tianxing ;
Liang, Chun ;
Wang, Li-Gang ;
Lin, Hai-Qing .
APPLIED PHYSICS LETTERS, 2012, 100 (25)