HEAT KERNEL ESTIMATES UNDER THE RICCI-HARMONIC MAP FLOW

被引:3
作者
Bailesteanu, Mihai [1 ]
Tran, Hung [2 ]
机构
[1] Cent Connecticut State Univ, Dept Math, 120 Marcus White Hall, New Britain, CT 06052 USA
[2] Univ Calif Irvine, Dept Math, 440G Rowland Hall, Irvine, CA 92612 USA
关键词
heat equation; heat kernel; Ricci flow; harmonic map; Sobolev embedding; differential Harnack inequality; EQUATION;
D O I
10.1017/S0013091516000523
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers the Ricci flow coupled with the harmonic map flow between two manifolds. We derive estimates for the fundamental solution of the corresponding conjugate heat equation and we prove an analogue of Perelman's differential Harnack inequality. As an application, we find a connection between the entropy functional and the best constant in the Sobolev embedding theorem in R-n.
引用
收藏
页码:831 / 857
页数:27
相关论文
共 28 条
[1]  
Anbin T., 1976, J. Diff. Geom., V11, P573
[2]  
Bailesteanu M, 2012, P AM MATH SOC, V140, P691
[3]   Gradient estimates for the heat equation under the Ricci flow [J].
Bailesteanu, Mihai ;
Cao, Xiaodong ;
Pulemotov, Artem .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (10) :3517-3542
[4]   The conjugate heat equation and Ancient solutions of the Ricci flow [J].
Cao, Xiaodong ;
Zhang, Qi S. .
ADVANCES IN MATHEMATICS, 2011, 228 (05) :2891-2919
[5]   DIFFERENTIAL HARNACK ESTIMATES FOR TIME-DEPENDENT HEAT EQUATIONS WITH POTENTIALS [J].
Cao, Xiaodong ;
Hamilton, Richard S. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2009, 19 (04) :989-1000
[6]  
Chow B., 2008, RICCI FLOW TECHNIQ 2, V144
[7]  
Chow Bennett, 2010, RICCI FLOW TECHNIQ 3, V163
[8]  
Guenther CM., 2002, J. Geom. Anal, V12, P425, DOI [10.1007/BF02922048, DOI 10.1007/BF02922048]
[9]  
Hamilton R. S., 1993, COMMUN ANAL GEOM, V1, P113
[10]  
HAMILTON RS, 1993, J DIFFER GEOM, V37, P225