Rank-one Einstein solvmanifolds of dimension 7

被引:50
作者
Will, C
机构
[1] Univ Nacl Cordoba, FaMAF, RA-5000 Cordoba, Argentina
[2] Univ Nacl Cordoba, CIEM, RA-5000 Cordoba, Argentina
关键词
Einstein; solvmanifold; critical points; nilpotent and solvable Lie groups; left invariant metrics;
D O I
10.1016/S0926-2245(03)00037-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use a variational approach to determine explicitly all the 7-dimensional rank-one Einstein solvmanifolds. We prove that each one of the 34 nilpotent Lie algebras of dimension 6 admits a rank-one solvable extension which can be endowed with an Einstein left-invariant Riemannian metric. This also produces 34 Ricci soliton metrics on R-6 which are homogeneous. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:307 / 318
页数:12
相关论文
共 12 条
[1]  
Alekseevskii D., 1971, MAT SBORNIK, V84, P14
[2]  
BESSE A, 1987, ERGEB MATH, V10
[3]   Alekseevskian spaces [J].
Cortes, V .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1996, 6 (02) :129-168
[4]  
DAMEK E, 1992, J GEOM ANAL, V0002, P00213, DOI DOI 10.1007/BF02921294
[5]  
DATRI JE, 1980, J DIFFER GEOM, V15, P61
[6]   Noncompact homogeneous Einstein spaces [J].
Heber, J .
INVENTIONES MATHEMATICAE, 1998, 133 (02) :279-352
[7]  
Helgason S., 1978, DIFFERENTIAL GEOMETR
[8]   Finding Einstein solvmanifolds by a variational method [J].
Lauret, J .
MATHEMATISCHE ZEITSCHRIFT, 2002, 241 (01) :83-99
[9]   Standard Einstein solvmanifolds as critical points [J].
Lauret, J .
QUARTERLY JOURNAL OF MATHEMATICS, 2001, 52 :463-470
[10]   Ricci soliton homogeneous nilmanifolds [J].
Lauret, J .
MATHEMATISCHE ANNALEN, 2001, 319 (04) :715-733