Soliton and singular solutions to the Schrodinger-Hartree equation

被引:1
|
作者
Genev, Hristo [1 ]
Venkov, George [2 ]
机构
[1] Sofia Univ St Kl Ohridski, Fac Math & Informat, Sofia, Bulgaria
[2] Techn Univ Sofia, Fac Appl Math & Informat, Sofia, Bulgaria
来源
APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS | 2010年 / 1293卷
关键词
Schrodinger-Hartree equation; solitary waves; blow-up solutions; variational methods;
D O I
10.1063/1.3515573
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we prove the existence of solitary wave solutions and give conditions for formation of singularities for the focusing time-dependent Schrodinger-Hartree equation in R-n.
引用
收藏
页码:107 / +
页数:2
相关论文
共 50 条
  • [41] CONSERVATION-LAWS AND TIME DECAY FOR THE SOLUTIONS OF SOME NON-LINEAR SCHRODINGER-HARTREE EQUATIONS AND SYSTEMS
    DIAS, JP
    FIGUEIRA, M
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1981, 84 (02) : 486 - 508
  • [42] Comparison of soliton solutions of the nonlinear Schrodinger equation and the nonlinear amplitude equation
    Dakova, A.
    Dakova, D.
    Kovachev, L.
    18TH INTERNATIONAL SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS, 2015, 9447
  • [43] Soliton solutions and soliton interactions for the coupled nonlinear Schrodinger equation with varying coefficients
    Tian, JP
    Li, JH
    Kang, LS
    Zhou, GS
    PHYSICA SCRIPTA, 2005, 72 (05) : 394 - 398
  • [44] Theory of singular vortex solutions of the nonlinear Schrodinger equation
    Fibich, Gadi
    Gavish, Nir
    PHYSICA D-NONLINEAR PHENOMENA, 2008, 237 (21) : 2696 - 2730
  • [45] On the solutions of the Schrodinger equation with singular interaction potentials.
    Jeffe, George
    ZEITSCHRIFT FUR PHYSIK, 1930, 66 (11-12): : 748 - 769
  • [46] OPTICAL SOLITON SOLUTIONS OF THE FRACTIONAL PERTURBED NONLINEAR SCHRODINGER EQUATION
    Ali, Khalid Karam
    Karakoc, Seydi Battal Gazi
    Rezazadeh, Hadi
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2020, 10 (04): : 930 - 939
  • [47] New visions of the soliton solutions to the modified nonlinear Schrodinger equation
    Bekir, Ahmet
    Zahran, Emad H. M.
    OPTIK, 2021, 232
  • [48] Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schrodinger Equation
    Wang, Bao
    Zhang, Zhao
    Li, Biao
    CHINESE PHYSICS LETTERS, 2020, 37 (03)
  • [49] Asymptotic soliton train solutions of the defocusing nonlinear Schrodinger equation
    Kamchatnov, AM
    Kraenkel, RA
    Umarov, BA
    PHYSICAL REVIEW E, 2002, 66 (03):
  • [50] Invariant soliton solutions for the coupled nonlinear Schrodinger type equation
    Malik, Sandeep
    Kumar, Sachin
    Nisar, Kottakkaran Sooppy
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 66 : 97 - 105