共 20 条
Virial identity and weak dispersion for the magnetic Dirac equation
被引:27
作者:
Boussaid, Nabile
[2
]
D'Ancona, Piero
[1
]
Fanelli, Luca
[3
]
机构:
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Univ Franche Comte, Dept Math, F-25030 Besancon, France
[3] Univ Basque Country, Dept Matemat, E-48080 Bilbao, Spain
来源:
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES
|
2011年
/
95卷
/
02期
关键词:
Dirac equation;
Smoothing estimates;
Strichartz estimates wave equation;
Dispersive equations;
Magnetic potential;
SCHRODINGER-EQUATIONS;
STRICHARTZ INEQUALITIES;
STANDING WAVES;
POTENTIALS;
DECAY;
D O I:
10.1016/j.matpur.2010.10.004
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We analyze the dispersive properties of a Dirac system perturbed with a magnetic field. We prove a general virial identity; as applications, we obtain smoothing and endpoint Strichartz estimates which are optimal from the decay point of view. We also prove a Hardy-type inequality for the perturbed Dirac operator. (C) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:137 / 150
页数:14
相关论文