Virial identity and weak dispersion for the magnetic Dirac equation

被引:27
作者
Boussaid, Nabile [2 ]
D'Ancona, Piero [1 ]
Fanelli, Luca [3 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
[2] Univ Franche Comte, Dept Math, F-25030 Besancon, France
[3] Univ Basque Country, Dept Matemat, E-48080 Bilbao, Spain
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2011年 / 95卷 / 02期
关键词
Dirac equation; Smoothing estimates; Strichartz estimates wave equation; Dispersive equations; Magnetic potential; SCHRODINGER-EQUATIONS; STRICHARTZ INEQUALITIES; STANDING WAVES; POTENTIALS; DECAY;
D O I
10.1016/j.matpur.2010.10.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the dispersive properties of a Dirac system perturbed with a magnetic field. We prove a general virial identity; as applications, we obtain smoothing and endpoint Strichartz estimates which are optimal from the decay point of view. We also prove a Hardy-type inequality for the perturbed Dirac operator. (C) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:137 / 150
页数:14
相关论文
共 20 条
[1]   Weak Dispersive Estimates for Schrodinger Equations with Long Range Potentials [J].
Barcelo, J. A. ;
Ruiz, A. ;
Vega, L. ;
Vilela, M. C. .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2009, 34 (01) :74-105
[2]   Some dispersive estimates for Schrodinger equations with repulsive potentials [J].
Barcelo, Juan A. ;
Ruiz, Alberto ;
Vega, Luis .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 236 (01) :1-24
[3]   Stable directions for small nonlinear Dirac standing waves [J].
Boussaid, Nabile .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (03) :757-817
[4]   ON THE ASYMPTOTIC STABILITY OF SMALL NONLINEAR DIRAC STANDING WAVES IN A RESONANT CASE [J].
Boussaid, Nabile .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (04) :1621-1670
[5]   Maximal functions associated to filtrations [J].
Christ, M ;
Kiselev, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (02) :409-425
[6]   Strichartz and smoothing estimates for dispersive equations with magnetic potentials [J].
D'Ancona, Piero ;
Fanelli, Luca .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2008, 33 (06) :1082-1112
[7]   Decay estimates for the wave and Dirac equations with a magnetic potential [J].
D'Ancona, Piero ;
Fanelli, Luca .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (03) :357-392
[8]   An analytical proof of Hardy-like inequalities related to the Dirac operator [J].
Dolbeault, J ;
Esteban, MJ ;
Loss, M ;
Vega, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 216 (01) :1-21
[9]   Non-trapping magnetic fields and Morrey-Campanato estimates for Schrodinger operators [J].
Fanelli, Luca .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (01) :1-14
[10]   Magnetic virial identities, weak dispersion and Strichartz inequalities [J].
Fanelli, Luca ;
Vega, Luis .
MATHEMATISCHE ANNALEN, 2009, 344 (02) :249-278