Multistep Traffic Speed Prediction from Spatial-Temporal Dependencies Using Graph Neural Networks

被引:6
|
作者
Wu, Xuesong [1 ]
Fang, Jie [1 ]
Liu, Zhijia [1 ]
Wu, Xiongwei [1 ]
机构
[1] Fuzhou Univ, Coll Civil Engn, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
Traffic speed prediction; Deep learning; Graph convolution; Attention mechanism; FLOW;
D O I
10.1061/JTEPBS.0000600
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate traffic forecasting on citywide networks is one of the crucial urban data mining applications that accurately provide congestion warning and transportation scheduling. While previous work has made significant efforts to learn traffic temporal dynamics and spatial dependencies, two key limitations exist in current models: (1) most existing approaches solely capture spatial correlations among neighbors on predefined graph structure, and genuine relation may be missing due to the incomplete graph connections; and (2) existing methods are defective to capture the temporal trends because the recurrent and stacking structure employed in these methods suffers from the long-range temporal dependency vanquish problem. To overcome the difficulty in multistep prediction and further capture the dynamic spatial-temporal dependencies of traffic flows, we propose a new traffic speed prediction framework for multiscale graph attention networks (MS-GATNs). In particular, MS-GATNs is a hierarchically structured graph neural architecture that learns not only the local region-wise geographical dependencies but also the spatial semantics from a global perspective. Furthermore, a multiheads attention mechanism is introduced to empower our model with the capability of capturing complex nonstationary temporal dynamics. Experiments on real-world traffic data sets demonstrate that MS-GATNs outperforms the state-of-the-art baselines in long-term forecasting.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Traffic Speed Prediction Based on Spatial-Temporal Fusion Graph Neural Network
    Liu, Zhongbo
    Li, Mingkui
    Zhao, Jianli
    Sun, Qiuxia
    Zhuo, Futong
    2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer, ICFTIC 2021, 2021, : 77 - 81
  • [2] A Two-Tower Spatial-Temporal Graph Neural Network for Traffic Speed Prediction
    Shen, Yansong
    Li, Lin
    Xie, Qing
    Li, Xin
    Xu, Guandong
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2022, PT I, 2022, 13280 : 406 - 418
  • [3] Attention spatial-temporal graph neural network for traffic prediction
    Gan P.
    Nong L.
    Zhang W.
    Lin J.
    Wang J.
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2023, 50 (01): : 168 - 176
  • [4] Channel attention-based spatial-temporal graph neural networks for traffic prediction
    Wang, Bin
    Gao, Fanghong
    Tong, Le
    Zhang, Qian
    Zhu, Sulei
    DATA TECHNOLOGIES AND APPLICATIONS, 2023, 58 (01) : 81 - 94
  • [5] An Attention and Wavelet Based Spatial-Temporal Graph Neural Network for Traffic Flow and Speed Prediction
    Zhao, Shihao
    Xing, Shuli
    Mao, Guojun
    MATHEMATICS, 2022, 10 (19)
  • [6] Spatial-Temporal Tensor Graph Convolutional Network for Traffic Speed Prediction
    Xu, Xuran
    Zhang, Tong
    Xu, Chunyan
    Cui, Zhen
    Yang, Jian
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (01) : 92 - 103
  • [7] Adaptive spatial-temporal graph attention network for traffic speed prediction
    Zhang, Xijun
    Zhang, Baoqi
    Zhang, Hong
    Nie, Shengyuan
    Zhang, Xianli
    High Technology Letters, 2024, 30 (03) : 221 - 230
  • [8] Adaptive spatial-temporal graph attention network for traffic speed prediction
    张玺君
    ZHANG Baoqi
    ZHANG Hong
    NIE Shengyuan
    ZHANG Xianli
    HighTechnologyLetters, 2024, 30 (03) : 221 - 230
  • [9] Spatial-Temporal Dynamic Graph Convolutional Neural Network for Traffic Prediction
    Xiao, Wenjuan
    Wang, Xiaoming
    IEEE ACCESS, 2023, 11 : 97920 - 97929
  • [10] A dynamical spatial-temporal graph neural network for traffic demand prediction
    Huang, Feihu
    Yi, Peiyu
    Wang, Jince
    Li, Mengshi
    Peng, Jian
    Xiong, Xi
    INFORMATION SCIENCES, 2022, 594 : 286 - 304