Multiple positive solutions to critical p-Laplacian equations with vanishing potential

被引:0
作者
Guo, Lun [1 ]
Li, Qi [2 ,3 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430065, Peoples R China
[3] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2021年 / 72卷 / 04期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
p-Laplacian equation; Critical Sobolev exponent; Vanishing potential; Positive solutions; Ljusternik-Schnirelman theory; NONLINEAR SCHRODINGER-EQUATIONS; GLOBAL COMPACTNESS RESULT; ELLIPTIC PROBLEMS; STANDING WAVES; CRITICAL FREQUENCY; CRITICAL GROWTH; BOUND-STATES; EXISTENCE; SYMMETRY; BEHAVIOR;
D O I
10.1007/s00033-021-01598-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the following p-Laplacian equation -epsilon(p)Delta(p)u + V(x)vertical bar u vertical bar(p-2)u = vertical bar u vertical bar(p)*(-2)u, u is an element of D-1,D-p(R-N), where p is an element of (1, N), p-Laplacian operator Delta(p):=div(vertical bar del u vertical bar(p-2)del u), p* = Np/(N - p), epsilon is a positive parameter, V(x) is an element of L-N/p(R-N) boolean AND L-loc(infinity)(R-N) and V(x) is assumed to be zero in some region of R-N, which means it is of the vanishing potential case. In virtue of Ljusternik-Schnirelman theory of critical points, we succeed in proving the multiplicity of positive solutions. This result generalizes the result for semilinear Schrodinger equation by Chabrowski and Yang (Port. Math. 57 (2000), 273-284) to p-Laplacian equation.
引用
收藏
页数:20
相关论文
共 43 条
[1]  
Albalawi W, 2020, ANN MAT PUR APPL, V199, P23, DOI 10.1007/s10231-019-00865-6
[2]  
Alves CO, 2002, COMMUN PURE APPL ANA, V1, P417
[3]   Existence of positive solutions for a problem with lack of compactness involving the p-Laplacian [J].
Alves, CO .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (07) :1187-1206
[4]   Local mountain-pass for a class of elliptic problems in RN involving critical growth [J].
Alves, CO ;
do O, JM ;
Souto, MAS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (04) :495-510
[5]   Bound states of nonlinear Schrodinger equations with potentials vanishing at infinity [J].
Ambrosetti, A. ;
Malchiodi, A. ;
Ruiz, D. .
JOURNAL D ANALYSE MATHEMATIQUE, 2006, 98 (1) :317-348
[6]  
Ambrosetti A, 2005, DIFFER INTEGRAL EQU, V18, P1321
[7]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[8]   Multiplicity results for critical p-Laplacian problems [J].
Barletta, Giuseppina ;
Candito, Pasquale ;
Marano, Salvatore A. ;
Perera, Kanishka .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (04) :1431-1440
[9]   EXISTENCE OF POSITIVE SOLUTIONS OF THE EQUATION -DELTA-U+A(X)U=U(N+2)/(N-2) IN RN [J].
BENCI, V ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 88 (01) :90-117
[10]   MULTIPLE POSITIVE SOLUTIONS OF SOME ELLIPTIC PROBLEMS VIA THE MORSE-THEORY AND THE DOMAIN TOPOLOGY [J].
BENCI, V ;
CERAMI, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :29-48