Augmented Lagrangian-SQP methods for nonlinear optimal control problems of tracking type

被引:40
作者
Ito, K [1 ]
Kunisch, K [1 ]
机构
[1] TECH UNIV BERLIN,FACHBREICH MATH,D-10623 BERLIN,GERMANY
关键词
Lagrangian methods; SQP methods; nonlinear optimal programming;
D O I
10.1137/S0363012994261707
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An augmented Lagrangian method with second-order update is developed and its relationship to the sequential quadratic programming method is described. The rate of convergence proof depends on a second-order sufficient optimality condition, which is shown to be satisfied for a class of nonlinear optimal control problems of tracking type. Numerical examples are included which demonstrate the globalizing effect of the augmented Lagrangian method.
引用
收藏
页码:874 / 891
页数:18
相关论文
共 9 条
[1]  
Bertsekas D. P., 2019, Reinforcement learning and optimal control
[2]  
CHEN ZM, 1991, INT S NUM M, V100, P79
[3]  
GRIVARD P, 1985, ELLIPTIC PROBLEMS NO
[4]  
GUNZBURGER MD, 1991, COMPUT MATH APPL, P123
[5]  
HEINKENSCHLOSS M, NUMERICAL SOLUTION S
[6]   Augmented Lagrangian-SQP-methods in Hilbert spaces and application to control in the coefficients problems [J].
Ito, K ;
Kunisch, K .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (01) :96-125
[7]  
LIONS JL, 1985, CONTROL DISTRIBUTED
[8]  
Tinkham M., 1975, INTRO SUPERCONDUCTIV
[9]  
Troianello G. M., 1987, ELLIPTIC DIFFERENTIA, DOI DOI 10.1007/978-1-4899-3614-1