SEQUENCES OF SMALL HOMOCLINIC SOLUTIONS FOR DIFFERENCE EQUATIONS ON INTEGERS

被引:0
|
作者
Steglinski, Robert [1 ]
机构
[1] Lodz Univ Technol, Inst Math, Wolczanska 215, Lodz, Poland
关键词
Difference equations; discrete p-Laplacian; variational methods; infinitely many solutions; DISCRETE P-LAPLACIAN; DIRICHLET PROBLEM; EXISTENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we determine a concrete interval of positive parameters lambda, for which we prove the existence of infinitely many homoclinic solutions for a discrete problem -Delta (a(k)phi(p) (Delta u(k - 1)) vertical bar b(k)phi(p) (u(k)) = lambda f (k, u(k)), k is an element of Z, where the nonlinear term f : Z x R -> R has an appropriate oscillatory behavior at zero. We use both the general variational principle of Ricceri and the direct method introduced by Faraci and Kristaly [11].
引用
收藏
页数:12
相关论文
共 50 条
  • [21] On Fast Homoclinic Solutions for Second-Order Damped Difference Equations
    Adel Daouas
    Ameni Guefrej
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 3125 - 3142
  • [22] Homoclinic solutions of a class of periodic difference equations with asymptotically linear nonlinearities
    Kuang, Juhong
    Guo, Zhiming
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 89 : 208 - 218
  • [23] Homoclinic solutions for a higher order difference equation
    Kong, Lingju
    APPLIED MATHEMATICS LETTERS, 2018, 86 : 186 - 193
  • [24] HOMOCLINIC SOLUTIONS FOR SECOND-ORDER NONLINEAR DIFFERENCE EQUATIONS WITH JACOBI OPERATORS
    Xia, Fei
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [25] HOMOCLINIC ORBITS OF NONLINEAR FUNCTIONAL DIFFERENCE EQUATIONS WITH JACOBI OPERATORS
    Ren, Zhiguo
    Zhang, Yuanbiao
    Zheng, Bo
    Shi, Haiping
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2013, 43 (06) : 1991 - 2008
  • [26] Bounded and homoclinic-like solutions of second-order singular difference equations
    Ma, Ruyun
    Zhao, Jiao
    PERIODICA MATHEMATICA HUNGARICA, 2024, 89 (02) : 434 - 444
  • [27] Homoclinic Solutions of Nonlinear Laplacian Difference Equations Without Ambrosetti-Rabinowitz Condition
    Nastasi, Antonella
    Tersian, Stepan
    Vetro, Calogero
    ACTA MATHEMATICA SCIENTIA, 2021, 41 (03) : 712 - 718
  • [28] Homoclinic Solutions of Nonlinear Laplacian Difference Equations Without Ambrosetti-Rabinowitz Condition
    Antonella Nastasi
    Stepan Tersian
    Calogero Vetro
    Acta Mathematica Scientia, 2021, 41 : 712 - 718
  • [29] HOMOCLINIC AND QUASI-HOMOCLINIC SOLUTIONS FOR DAMPED DIFFERENTIAL EQUATIONS
    Zhang, Chuan-Fang
    Han, Zhi-Qing
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [30] Homoclinic Orbits for a Class of Nonlinear Difference Equations
    Shi, H.
    Liu, X.
    Zhang, Y.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2016, 6 (01): : 87 - 102