Chasing Collective Variables Using Autoencoders and Biased Trajectories

被引:50
作者
Belkacemi, Zineb [1 ,2 ]
Gkeka, Paraskevi [1 ,3 ]
Lelievre, Tony [2 ]
Stoltz, Gabriel [2 ,3 ]
机构
[1] Sanoft 1371 R&D, Struct Design & Informat, F-91385 Chilly Mazarin, France
[2] Ecole Ponts ParisTech, CERMICS, F-77455 Marne La Vallee, France
[3] INRIA, MATHERIALS Team Project, F-75589 Paris, France
基金
欧洲研究理事会;
关键词
MARKOV STATE MODELS; DIFFUSION MAPS; FREE-ENERGIES; DYNAMICS; SIMULATION; PROTEIN; REDUCTION;
D O I
10.1021/acs.jctc.1c00415
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Free energy biasing methods have proven to be powerful tools to accelerate the simulation of important conformational changes of molecules by modifying the sampling measure. However, most of these methods rely on the prior knowledge of low-dimensional slow degrees of freedom, i.e., collective variables (CVs). Alternatively, such CVs can be identified using machine learning (ML) and dimensionality reduction algorithms. In this context, approaches where the CVs are learned in an iterative way using adaptive biasing have been proposed: at each iteration, the learned CV is used to perform free energy adaptive biasing to generate new data and learn a new CV. In this paper, we introduce a new iterative method involving CV learning with autoencoders: Free Energy Biasing and Iterative Learning with AutoEncoders (FEBILAE). Our method includes a reweighting scheme to ensure that the learning model optimizes the same loss at each iteration and achieves CV convergence. Using the alanine dipeptide system and the solvated chignolin mini-protein system as examples, we present results of our algorithm using the extended adaptive biasing force as the free energy adaptive biasing method.
引用
收藏
页码:59 / 78
页数:20
相关论文
共 77 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Enhanced Sampling in Molecular Dynamics Using Metadynamics, Replica-Exchange, and Temperature-Acceleration [J].
Abrams, Cameron ;
Bussi, Giovanni .
ENTROPY, 2014, 16 (01) :163-199
[3]  
Alrachid H., 2015, SMAI J. Comput. Math, V1, P55, DOI [10.5802/smai-jcm.4, DOI 10.5802/SMAI-JCM.4]
[4]  
[Anonymous], 2017, J. Chem. Phys.
[5]   Reaction coordinates of biomolecular isomerization [J].
Bolhuis, PG ;
Dellago, C ;
Chandler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (11) :5877-5882
[6]   Data-Driven Collective Variables for Enhanced Sampling [J].
Bonati, Luigi ;
Rizzi, Valerio ;
Parrinello, Michele .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (08) :2998-3004
[7]   Promoting transparency and reproducibility in enhanced molecular simulations [J].
Bonomi, Massimiliano ;
Bussi, Giovanni ;
Camilloni, Carlo ;
Tribello, Gareth A. ;
Banas, Pavel ;
Barducci, Alessandro ;
Bernetti, Mattia ;
Bolhuis, Peter G. ;
Bottaro, Sandro ;
Branduardi, Davide ;
Capelli, Riccardo ;
Carloni, Paolo ;
Ceriotti, Michele ;
Cesari, Andrea ;
Chen, Haochuan ;
Chen, Wei ;
Colizzi, Francesco ;
De, Sandip ;
De La Pierre, Marco ;
Donadio, Davide ;
Drobot, Viktor ;
Ensing, Bernd ;
Ferguson, Andrew L. ;
Filizola, Marta ;
Fraser, James S. ;
Fu, Haohao ;
Gasparotto, Piero ;
Gervasio, Francesco Luigi ;
Giberti, Federico ;
Gil-Ley, Alejandro ;
Giorgino, Toni ;
Heller, Gabriella T. ;
Hocky, Glen M. ;
Iannuzzi, Marcella ;
Invernizzi, Michele ;
Jelfs, Kim E. ;
Jussupow, Alexander ;
Kirilin, Evgeny ;
Laio, Alessandro ;
Limongelli, Vittorio ;
Lindorff-Larsen, Kresten ;
Lohr, Thomas ;
Marinelli, Fabrizio ;
Martin-Samos, Layla ;
Masetti, Matteo ;
Meyer, Ralf ;
Michaelides, Angelos ;
Molteni, Carla ;
Morishita, Tetsuya ;
Nava, Marco .
NATURE METHODS, 2019, 16 (08) :670-673
[8]   AUTO-ASSOCIATION BY MULTILAYER PERCEPTRONS AND SINGULAR VALUE DECOMPOSITION [J].
BOURLARD, H ;
KAMP, Y .
BIOLOGICAL CYBERNETICS, 1988, 59 (4-5) :291-294
[9]   Interpretable embeddings from molecular simulations using Gaussian mixture variational autoencoders [J].
Bozkurt Varolguenes, Yasemin ;
Bereau, Tristan ;
Rudzinski, Joseph F. .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2020, 1 (01)
[10]   ELF: An Extended-Lagrangian Free Energy Calculation Module for Multiple Molecular Dynamics Engines [J].
Chen, Haochuan ;
Fu, Haohao ;
Shao, Xueguang ;
Chipot, Christophe ;
Cai, Wensheng .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2018, 58 (07) :1315-1318